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Abstract

Unlike the conventional neural network theories and implementations, Huang et al. [Universal approximation using incremental

constructive feedforward networks with random hidden nodes, IEEE Transactions on Neural Networks 17(4) (2006) 879–892] have

recently proposed a new theory to show that single-hidden-layer feedforward networks (SLFNs) with randomly generated additive or

radial basis function (RBF) hidden nodes (according to any continuous sampling distribution) can work as universal approximators and

the resulting incremental extreme learning machine (I-ELM) outperforms many popular learning algorithms. I-ELM randomly generates

the hidden nodes and analytically calculates the output weights of SLFNs, however, I-ELM does not recalculate the output weights of all

the existing nodes when a new node is added. This paper shows that while retaining the same simplicity, the convergence rate of I-ELM

can be further improved by recalculating the output weights of the existing nodes based on a convex optimization method when a new

hidden node is randomly added. Furthermore, we show that given a type of piecewise continuous computational hidden nodes (possibly

not neural alike nodes), if SLFNs f nðxÞ ¼
Pn
i¼1

biGðx; ai; biÞ can work as universal approximators with adjustable hidden node parameters,

from a function approximation point of view the hidden node parameters of such ‘‘generalized’’ SLFNs (including sigmoid networks,

RBF networks, trigonometric networks, threshold networks, fuzzy inference systems, fully complex neural networks, high-order

networks, ridge polynomial networks, wavelet networks, etc.) can actually be randomly generated according to any continuous sampling

distribution. In theory, the parameters of these SLFNs can be analytically determined by ELM instead of being tuned.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Neural networks have been successfully applied in many
applications. Out of many kinds of neural networks single-
hidden-layer feedforward networks (SLFNs) have been
investigated more thoroughly. SLFN functions with n

hidden nodes can be represented by

f nðxÞ ¼
Xn

i¼1

bigiðxÞ ¼
Xn

i¼1

biGðx; ai; biÞ; x 2 Rd ; bi 2 R,

(1)

where gi or Gðx; ai; biÞ denotes the hidden node output
function (with the hidden node parameters ðai; biÞ) and bi is
e front matter r 2007 Elsevier B.V. All rights reserved.
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the weight of the connection between the ith hidden node
and the output node. Seen from the viewpoint of network
architectures, two types of hidden nodes have been mainly
used in SLFNs:
(1)
 Additive hidden nodes. For additive nodes with activa-
tion function g, gi is defined as

giðxÞ ¼ Gðx; ai; biÞ ¼ gðai � xþ biÞ; ai 2 Rd ; bi 2 R,

(2)

where ai is the weight vector connecting the input layer
to the ith hidden node and bi is the bias of the ith
hidden node. ai � x denotes the inner product of vectors
ai and x in Rd .
(2)
 RBF (radial basis function) hidden nodes. The
RBF network can be considered a specific SLFN
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which applies RBF nodes in its hidden layer. The
output of each RBF node is some radially symmetric
function of the distance between the input and the
center. For RBF nodes with activation function g, gi is
defined as

giðxÞ ¼ Gðx; ai; biÞ

¼ gðbikx� aikÞ; ai 2 Rd ; bi 2 Rþ, ð3Þ

where ai and bi are the center and impact factor of the
ith RBF node, bi the weight connecting the ith RBF
hidden node to the output node. Rþ indicates the set of
all non-negative real value.
1The ELM codes are available at http://www.ntu.edu.sg/home/

egbhuang/.
According to the conventional neural network theories
[1,9,21,28], SLFNs with additive or RBF hidden nodes are
universal approximators when all the parameters of the
networks are adjustable. However, as observed in most
neural network implementations tuning all the parameters
of the networks may render learning complicated and
inefficient, and it may be difficult to directly train networks
with non-differential activation functions such as threshold
networks. Unlike conventional neural network theories,
Huang et al. [10] recently rigorously prove in an
incremental constructive method that in order to let
SLFNs work as universal approximators one may simply
randomly choose hidden nodes (with random values for
both the hidden biases and input weights linking the input
layer to the hidden layer or the random values for centers
and impact factors of RBF hidden nodes) and then only
need to analytically calculate (instead of tuning) the output
weights linking the hidden layer and the output layer. In
such SLFNs implementations, the activation functions for
additive nodes can be any bounded nonconstant piecewise
continuous functions g : R! R and the activation func-
tions for RBF nodes can be any integrable piecewise
continuous functions g : R! R and

R
R

gðxÞdxa0. The
resulting method referred to as incremental extreme
learning machine (I-ELM) [10] randomly adds nodes to
the hidden layer one by one and freezes the output weights
of the existing hidden nodes when a new hidden node is
added. I-ELM is not only efficient for SLFN with
continuous (including differentiable) activation functions
but also for SLFNs with piecewise continuous (such as
threshold) activation functions. ELM with fixed network
architectures has also been investigated in several earlier
works [12–16,22,23].

In this paper Barron’s convex optimization learning
method [1] is incorporated into I-ELM and the improved
method is referred to as convex I-ELM (CI-ELM).
Different from I-ELM, CI-ELM recalculates the output
weights of the existing hidden nodes after a new hidden
node is added. Different from Barron’s work [1], CI-ELM
adds randomly generated hidden nodes. The proposed
algorithm (CI-ELM) can achieve faster convergence rates
and more compact network architectures than I-ELM
while retaining the I-ELM’s simplicity and efficiency.
2. Proposed CI-ELM

For the sake of readability, in this paper we apply the
same notations used in our earlier work [10]. Typically, let
L2ðX Þ be a space of functions f on an input space X which
is a compact subset in the Euclidean space Rd such thatR

X
jf ðxÞj2 dxo1. Let L2ðRdÞ denoted by L2. The inner

product hu; vi is denoted by hu; vi ¼
R

X
uðxÞvðxÞdx and the

norm in L2ðX Þ space will be denoted as k � k. The closeness
between the network function f n and the target function f is
measured by the L2ðX Þ distance:

kf n � f k ¼

Z
X

jf nðxÞ � f ðxÞj2 dx

� �1=2
. (4)

Definition 2.1 (Voxman et al. [32, P. 334]). A function
gðxÞ : R! R is said to be piecewise continuous if it has only
a finite number of discontinuities in any interval, and its
left and right limits are defined (not necessarily equal) at
each discontinuity.

Definition 2.2. The function sequence fgnðxÞ ¼ Gðx; an; bnÞg

is said to be randomly generated if the corresponding
parameters ðan; bnÞ are randomly generated from Rd � R

based on a continuous sampling distribution probability.

Definition 2.3. A node is called a random node if its
parameters ða; bÞ are randomly generated based on a
continuous sampling distribution probability.

Remark 1. Definitions 2.2 and 2.3 imply that: Different
from the earlier works [24] which ‘‘randomly’’ generate
only some parameters (RBF centers ai) of the hidden nodes
based on the distribution of the training data or some
probability space determined by the target functions f, the
random nodes defined in our I-ELM (and ELM) are
independent from the target functions f and the training
datasets, and all the hidden node parameters (including
both ai and bi) are randomly generated. In the theory and
algorithms1 of I-ELM and ELM the function sequence
fgnðxÞ ¼ Gðx; an; bnÞg could actually be generated randomly
(without prior knowledge) before the target functions or
the training datasets are presented.

Without loss of generality, we assume that the network
has only one linear output node. All the analysis can be
easily extended to multi nonlinear output nodes cases. Let
en � f � f n denote the residual error function for the
current network f n with n hidden nodes where f 2 L2ðX Þ is
the target function. The I-ELM algorithm [10] does not
recalculate the output weights of the existing hidden nodes
after a new hidden node is added. In other words, once the
output weights of hidden nodes are calculated they will
remain frozen and will not be changed any more. That
means, the output function f n of the SLFNs of size n

http://www.ntu.edu.sg/home/egbhuang/
http://www.ntu.edu.sg/home/egbhuang/
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trained by the I-ELM is

f nðxÞ ¼ f n�1ðxÞ þ bngnðxÞ. (5)

In I-ELM, one randomly generates the newly added hidden
node gn according to any continuous sampling distribution
and then analytically calculates the corresponding output
weight bn ¼ hen�1; gni=kgnk

2 of the new hidden node
regardless of those previous existing nodes. In theory, the
input and output of the target function f need not be
normalized. Although hidden node parameters are chosen
randomly in I-ELM, as rigorously proved by Huang et al.
[10] I-ELM can work as a universal approximator:

Theorem 2.1 ([10]). Given any bounded nonconstant piece-

wise continuous function g : R! R for additive nodes or any

integrable piecewise continuous function g : R! R andR
R

gðxÞdxa0 for RBF nodes, for any continuous target

function f and any function sequence fgng randomly

generated based on any continuous sampling distribution,
limn!1kf � f nk ¼ 0 holds with probability 1 if

bn ¼
hen�1; gni

kgnk
2

. (6)

Theorem 2.1 not only shows the universal approximation
capability of I-ELM but also proposes a method on how to
calculate the output weights of the newly added hidden
node. In fact, there may exist different ways to find the
output weights of such SLFNs with different features.
Different from the network updating function (5) used in
I-ELM, CI-ELM adopts the Barron’s convex optimization
concept [1] by keeping the main feature of I-ELM where
hidden nodes are randomly generated:

f n ¼ ð1� bnÞf n�1 þ bngn, (7)

where 0pbnp1. In fact, we have:

Theorem 2.2. Given any nonconstant piecewise continuous

function g : R! R, if spanfGðx; a; bÞ : ða; bÞ 2 Rd � Rg is

dense in L2, then for any continuous target function f and any

function sequence fgnðxÞ ¼ Gðx; an; bnÞg randomly generated

based on any continuous sampling distribution, limn!1kf �

ðð1� bnÞf n�1 þ bngnÞk ¼ 0 holds with probability 1 if

bn ¼
hen�1; gn � f n�1i

kgn � f n�1k
2

, (8)

where Gðx; a; bÞ is the output of hidden nodes.

Proof. The proof method of I-ELM [10] can be adopted to
prove the validity of this theorem without any major
modification. The proof consists of two steps: (a) we first
prove that the sequence fkenkg converges; (b) we then
further prove that the sequence fkenkg converges to zero.
(a)
2It should be noted that Lemma II.6 of [10] is valid for any nonconstant

piecewise continuous function g.
According to formula (7), we have

en ¼ f � f n

¼ f � ðð1� bnÞf n�1 þ bngnÞ
¼ f � f n�1 þ bnf n�1 � bngn

¼ en�1 � bnðgn � f n�1Þ. ð9Þ

Let D ¼ ken�1k
2 � kenk

2, then we have

D ¼ ken�1k
2 � ken�1 � bnðgn � f n�1Þk

2

¼ 2bnhen�1; gn � f n�1i � b2nkgn � f n�1k
2

¼ kgn � f n�1k
2 hen�1; gn � f n�1i

2

kgn � f n�1k
4

�

� bn �
hen�1; gn � f n�1i

kgn � f n�1k
2

� �2
!
. ð10Þ

D is maximized iff bn ¼ hen�1; gn � f n�1i=kgn � f n�1k
2,

meaning that kenk ¼ kf � ðð1� bnÞf n�1 þ bngnÞk

achieves its minimum iff

bn ¼
hen�1; gn � f n�1i

kgn � f n�1k
2

. (11)

Moreover, when bn ¼ hen�1; gn � f n�1i=kgn � f n�1k
2,

D ¼ Dmax ¼ hen�1; gn � f n�1i
2=kgn � f n�1k

2
X0. So the

sequence fkenkg are decreasing and bounded below by
zero and the sequence fkenkg converges.
(b)
 Seen from the proof of the original I-ELM [10], the
sequence fkenkg converges to zero as long as the three
sufficient conditions are satisfied: (1) spanfGðx; a; bÞ :
ða; bÞ 2 Rd � Rg is dense in L2 (to support b.1 of the
proof of I-ELM [10], p. 882); (2) en ? ðen�1 � enÞ (to
support b.2 of the proof of I-ELM [10], p. 883); and
(3) g is a nonconstant piecewise continuous function2

(to support b.3 of the proof of I-ELM [10], p. 884).
Since conditions (1) and (3) have been given as the
preconditions of the theorem, in order to prove
limn!þ1kenk ¼ 0 we only need to prove
en ? ðen�1 � enÞ.
From formula (9) we have

hen; gn � f n�1i ¼ hen�1 � bnðgn � f n�1Þ; gn � f n�1i

¼ hen�1; gn � f n�1i � bnhgn � f n�1; gn � f n�1i

¼ hen�1; gn � f n�1i � bnkgn � f n�1k
2. ð12Þ

According to formula (11), we further have

hen; gn � f n�1i

¼ hen�1; gn � f n�1i �
hen�1; gn � f n�1i

kgn � f n�1k
2
� kgn � f n�1k

2

¼ hen�1; gn � f n�1i � hen�1; gn � f n�1i ¼ 0. ð13Þ

According to formula (9), en � en�1 ¼ �bnðgn � f n�1Þ.
Thus, from formula (13) we have

hen; en � en�1i ¼ hen;�bnðgn � f n�1Þi ¼ 0; ð14Þ

which means en ? ðen � en�1Þ.
This completes the proof of this theorem. &



ARTICLE IN PRESS
G.-B. Huang, L. Chen / Neurocomputing 70 (2007) 3056–3062 3059
Seen from formula (7) and Theorem 2.2, if a new hidden
node is added the output weight of the newly added hidden
node is set as: bn ¼ hen�1; gn � f n�1i=kgn � f n�1k

2 and the
output weights of the existing hidden nodes will be
multiplied by 1� bn ¼ 1� hen�1; gn � f n�1i=kgn � f n�1k

2.
Similar to Kwok and Yeung [19], a consistent estimate of
bn based on the training set is

bn ¼
E � ½E � ðF �HÞ�T

½E � ðF �HÞ� � ½E � ðF �HÞ�T

¼

PN
p¼1eðpÞ½eðpÞ � ðf ðpÞ � hðpÞÞ�PN

p¼1½eðpÞ � ðf ðpÞ � hðpÞÞ�2
, ð15Þ

where hðpÞ is the activation of the new hidden node for the
input of pth training sample and eðpÞ is the corresponding
residual error before this new hidden node is added. H ¼

½hð1Þ; . . . ; hðNÞ�T is the activation vector of the new node for
all the N training samples and E ¼ ½eð1Þ; . . . ; eðNÞ�T is the
residual vector before this new hidden node added. F ¼

½t1; . . . ; tN �
T is the target vector of the target function,

where tp is the target output of the pth training data xp.
In real applications, one may not really wish to get zero

approximation error by adding an infinite number of nodes
to the network, a maximum number of hidden nodes is
usually given. Thus, such an incremental constructive
method for SLFNs can be summarized as follows:

Algorithm CI-ELM. Given a training set
@ ¼ fðxi; tiÞjxi 2 Rn; ti 2 R; i ¼ 1; . . . ;Ng, activation func-
tion gðxÞ, maximum number of hidden nodes Lmax and
expected learning accuracy �,
Step
 Initialization: Let the number of hidden nodes L ¼ 0
and the residual error E ¼ t, where t ¼ ½t1; . . . ; tN �

T.

Step
 Learning step:

while LoLmax and kEk4�
(a) Increase by 1 the number of hidden nodes L:

L ¼ Lþ 1.
(b) Randomly assign hidden node parameters ðaL; bLÞ

for new hidden node L.
(c) Calculate the output weight bL for the newly

added hidden node:

bL ¼
E � ½E � ðF �HLÞ�

T

½E � ðF �HLÞ� � ½E � ðF �HLÞ�
T
. (16)

(d) Recalculate the output weight vectors of all
existing hidden nodes if L41:

bi ¼ ð1� bLÞbi; i ¼ 1; . . . ;L� 1. (17)

(e) Calculate the residual error after adding the new
hidden node L:

E ¼ ð1� bLÞE þ bLðF �HLÞ (18)
endwhile
i

weight of ith hidden node before a new hidden is added and

b in the right side of Eq. (17) represents the output

bi in the left side represents the output weight of ith hidden
node after a new hidden added. The residual error E in the
right side of Eq. (18) represents the residual error vector
before the new node added and the E in the left side
represents the residual error vector after the new node
added, which is consistent to EL ¼ f � f L ¼ ðð1� bLÞfþ

bLf Þ� ðð1� bLÞf L�1 þ bLgLÞ ¼ ð1� bLÞEL�1 þ bLðf � gLÞ.

Remark 2. Seen from Theorem 2.2, when the network
architecture is fixed (with fixed n) we have

Theorem 2.3. Given any nonconstant piecewise continuous

function g : R! R, if spanfGðx; a; bÞ : ða; bÞ 2 Rd � Rg is

dense in L2, for any continuous target function f and any

function sequence fgnðxÞ ¼ Gðx; an; bnÞg randomly generated

based on any continuous sampling distribution, limn!1kf �

f nk ¼ 0 holds with probability 1 if the output parameters are

determined by ordinary least square to minimize

kf ðxÞ �
Pn

i¼1bigiðxÞk.

Theorem 2.3 means that the ELM with fixed network
architectures [12–14,16] where the output parameters are
determined by ordinary least square can work as universal
approximators if only the activation function g is
nonconstant piecewise and spanfGðx; a; bÞ : ða; bÞ 2 Rd �

Rg is dense in L2.

Remark 3. Theorems 2.2 and 2.3 are valid for any type of
hidden node activation function g as long as g is
nonconstant piecewise continuous and spanfGðx; a; bÞ :
ða; bÞ 2 Rd � Rg is dense in L2. The output function of
hidden node Gðx; a; bÞ could be other than the traditional
neural nodes such as additive or RBF hidden nodes. For
RBF hidden nodes with activation function g and hidden
node parameters ða; bÞ, Gðx; a; bÞ is defined as
Gðx; a; bÞ ¼ g bkx� akð Þ. For additive hidden nodes with
activation function g and hidden node parameters ða; bÞ,
Gðx; a; bÞ is defined as Gðx; a; bÞ ¼ gða � xþ bÞ. According
to [28] given any bounded nonconstant piecewise contin-
uous integrable g spanfgðbðx� aÞÞ : ða; bÞ 2 Rd � Rþg is
dense in L2. Thus, Theorems 2.2 and 2.3 are valid for
any bounded nonconstant piecewise continuous integrable
RBF hidden nodes. Furthermore, according to [21]
spanfgða � xþ bÞ : ða; bÞ 2 Rd � Rg is dense in L2 if and
only if g is not polynomial (almost everywhere), thus,
Theorems 2.2 and 2.3 are also valid for nonconstant
piecewise continuous nonpolynomial additive hidden
nodes.

Remark 4. The conventional learning algorithms for
SLFNs always need to adjust the hidden node parameters
ða; bÞ. Interestingly, Theorems 2.2 and 2.3 indicate that if
SLFNs can work as universal approximators with adjus-
table hidden parameters ða; bÞ and one does not care much
the network size, from a function approximation point of
view the hidden node parameters can actually be randomly



ARTICLE IN PRESS

Table 1

Specification of benchmark regression problems

Problems # Training data # Testing data # Attributes

Abalone 2000 2177 8

Auto price 80 79 15

Boston housing 250 256 13

California housing 8000 12 640 8

Census (House8L) 10 000 12 784 8

Delta ailerons 3000 4129 5

Delta elevators 4000 5517 6

Machine CPU 100 109 6
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Fig. 1. Performance comparison (testing RMSE) between CI-ELM and

I-ELM for abalone case.
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generated according to any continuous sampling distribu-
tion and then fixed instead of being tuned.

Remark 5. It may be worth mentioning the differences
between tuning-free ELM and the earlier tuning-based
works [24]. The earlier work is valid for RBF hidden nodes
only. However, ELM is a unified framework for general-
ized SLFNs and this paper has shown its universal
approximation capability for any type of computational
hidden nodes as long as SLFNs with this type of adjustable
hidden nodes can be universal approximators, which
include additive/RBF hidden nodes, multiplicative nodes,
fuzzy rules [11], fully complex nodes [18,22], hinging
functions [3], high-order nodes [7], ridge polynomials [30],
wavelets [5,6], and Fourier series [8], etc. The hidden nodes
in ELM can be combinatorial nodes each consisting of
different type of computational nodes. Even for RBF
hidden nodes, although superficially similar, ELM and the
earlier work are different in essence.

Each RBF hidden node has two important elements: the
center ai and the impact factor bi. In Lowe [24] RBF
centers ai are randomly chosen from the training data [24],
but one has to tune and fix the (same) value of impact
factors bi for all the RBF nodes according to the spread of
those RBF centers ELM for RBF case randomly generates
both centers ai and impact factors bi, respectively, from Rd

and Rþ according to any continuous sampling distribution.
In ELM, all the hidden node parameters are totally
randomly generated and completely independent from the
training data. If RBF centers and impact factors are
selected based on the training data, it may give advantages
to the training data and thus easily causes over fitting. In
addition, whether the earlier work [24] has the universal
approximation capability is still an open question, whereas
the universal approximation capability of ELM (with any
random sequence of hidden nodes) has been investigated
and proved.

From a function approximation point of view the hidden
nodes of ELMs are not much relevant to the target
functions or the training data. All the hidden node
parameters (ai and bi) of ELM could randomly be
generated according to any given continuous probability
distribution without any prior knowledge (even before the
data are presented and the ELM learning starts). All the
hidden node parameters (ai and bi) of ELM are not only
independent from each other but also independent from
the training data, which makes ELM learning scheme more
efficiently and much simpler.

3. Performance evaluation

The regression performance of CI-ELM, I-ELM, the
stochastic gradient descent BP [20], and other well-known
incremental learning algorithms like RAN [29] and MRAN
[33] are compared in this paper. Table 1 gives the
specification of eight real regression problems [2] used in
such comparisons. All the inputs of these datasets are
normalized into the range ½�1; 1� in our experiments. All
the simulations are running in MATLAB 6.5 environment
and the same PC with Pentium IV 3.0GHz CPU and 1G
RAM.
The performance of CI-ELM has been tested on two

popular activation functions: gðxÞ ¼ 1=ð1þ expð�xÞÞ (for
additive nodes) and gðxÞ ¼ expð�bkx� mk2Þ (for RBF
nodes). The input weights and hidden biases are randomly
chosen from the range ½�1; 1� for additive nodes. The
centers are randomly chosen from the range ½�1; 1� and the
impact factor b is chosen from the range ½0; 0:5� for RBF
nodes.
Fig. 1 shows the performance comparison (testing

RMSE) between CI-ELM and I-ELM with up to 3000
hidden nodes for abalone dataset. It can be seen that CI-
ELM with additive nodes and RBF nodes obviously
converge much faster than I-ELM with additive nodes
and RBF nodes, respectively. In fact, the same general-
ization performance trends have been obtained for all the
tested cases.
It is found that without further increasing hidden nodes

CI-ELM with 200 hidden nodes can generally obtain good
performance for all the tested cases which are comparable
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Table 2

Training time (s) comparison between CI-ELM and I-ELM with 200 hidden nodes

Datasets Sigmoid RBF RANa MRANa BPb

CI-ELMa I-ELMa CI-ELMa I-ELMa

Abalone 0.2531 0.2214 0.4409 0.5030 39.928 255.84 0.4406

Auto price 0.0300 0.0329 0.0358 0.0468 0.3565 2.5015 0.0154

Boston 0.0311 0.0515 0.0576 0.0657 2.0940 22.767 0.0579

California 0.6902 0.5448 1.2851 1.3656 3301.7 2701.1 2.0307

Census 0.9330 0.8667 1.7113 1.7928 5399.0 3805.3 2.7814

Delta ailerons 0.2078 0.2620 0.3739 0.4327 237.96 175.07 0.6610

Delta elevators 0.2939 0.2708 0.5539 0.6321 661.78 331.75 0.8830

Machine CPU 0.0342 0.0234 0.0376 0.0447 0.1735 0.2454 0.0206

aRun in MATLAB environment.
bRun in C executable environment which is usually much faster than MATLAB.

Table 3

Performance comparison (testing RMSE) between CI-ELM and I-ELM with 200 hidden nodes

Datasets Sigmoid RBF RAN MRAN BP

CI-ELM I-ELM CI-ELM I-ELM

Abalone 0:0828 0.0920 0:0858 0.0938 0.1183 0.0906 0.1175

Auto price 0.0927 0.0977 0.1196 0.1261 0.1418 0.1373 0.2383

Boston 0.1106 0.1167 0.1455 0.1320 0.1474 0.1321 0.1882

California 0.1547 0.1683 0.1660 0.1731 0.1506 0.1480 0.1579

Census 0:0873 0.0923 0:0860 0.0922 0.1061 0:0903 0:0866
Delta ailerons 0:0480 0.0525 0:0494 0.0632 0.1018 0.0618 0:0459
Delta elevators 0:0604 0.0740 0:0622 0.0790 0.1322 0.0807 0:0653
Machine CPU 0.0489 0.0504 0.0589 0.0674 0.1069 0.1068 0.1988

Table 4

Performance comparison (standard deviation of testing RMSE) between CI-ELM and I-ELM with 200 hidden nodes

Datasets Sigmoid RBF RAN MRAN BP

CI-ELM I-ELM CI-ELM I-ELM

Abalone 0.0030 0.0046 0.0029 0.0053 0.0076 0.0065 0.0095

Auto price 0.0083 0.0069 0.0177 0.0255 0.0261 0.0381 0.0587

Boston 0.0059 0.0112 0.0076 0.0126 0.0177 0.0140 0.0243

California 0.0049 0.0049 0.0055 0.0081 0.0035 0.0030 0.0033

Census 0.0018 0.0023 0.0023 0.0029 0.0038 0.0042 0.0025

Delta ailerons 0.0058 0.0078 0.0069 0.0116 0.0083 0.0050 0.0033

Delta elevators 0.0067 0.0126 0.0040 0.0123 0.0130 0.0068 0.0019

Machine CPU 0.0084 0.0079 0.0116 0.0177 0.0246 0.0367 0.0429
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to the results obtained by RAN, MRAN, and BP. Tables 2
and 3 show the average training time and generalization
performance obtained over 20 trials for each case. For the
sake of readability, the lowest close generalization perfor-
mance (testing RMSE) obtained by different algorithms
are underlined in Table 3 while the best results among all
algorithms are shown in boldface. As observed from Tables
2 and 3 CI-ELM and I-ELM spend almost the same training
time for the same network size but CI-ELM generally
obtains a better generalization performance. As observed
from Fig. 1, CI-ELM has a much faster convergence rate
than I-ELM. In order to reach the same generalization
performance CI-ELM may need much fewer hidden nodes.
Thus CI-ELM may need less training time in order to reach
the same generalization performance. Table 4 shows that
CI-ELM usually produces smaller standard deviations,
which means CI-ELM is usually much stabler.

4. Conclusion

Motivated by the recently proposed learning theory on
neural networks with random hidden nodes [10] and the
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convex optimization method for neural networks [1] this
paper further proposes a convex incremental extreme
learning machine (CI-ELM). CI-ELM randomly generates
and adds computational nodes to the hidden layer and only
analytically calculates the output weights of the hidden
nodes. Different from I-ELM, based on a convex
optimization method CI-ELM recalculates the output
weights of the existing hidden nodes after a new hidden
node is added. CI-ELM can obtain a faster convergence
rate and more compact network architecture while retain-
ing the I-ELM’s simplicity and efficiency. The universal
approximation capability of CI-ELM has been proved for
‘‘generalized’’ feedforward networks in this paper.
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