
Author's personal copy

Neurocomputing 71 (2008) 3460–3468

Enhanced random search based incremental extreme learning machine

Guang-Bin Huanga,�, Lei Chena,b

aSchool of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
bSchool of Computing, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

Received 27 June 2007; received in revised form 21 October 2007; accepted 25 October 2007

Communicated by K. Li

Available online 21 November 2007

Abstract

Recently an incremental algorithm referred to as incremental extreme learning machine (I-ELM) was proposed by Huang et al.

[G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random

hidden nodes, IEEE Trans. Neural Networks 17(4) (2006) 879–892], which randomly generates hidden nodes and then analytically

determines the output weights. Huang et al. [G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental construc-

tive feedforward networks with random hidden nodes, IEEE Trans. Neural Networks 17(4) (2006) 879–892] have proved in theory

that although additive or RBF hidden nodes are generated randomly the network constructed by I-ELM can work as a universal

approximator. During our recent study, it is found that some of the hidden nodes in such networks may play a very minor role

in the network output and thus may eventually increase the network complexity. In order to avoid this issue and to obtain a

more compact network architecture, this paper proposes an enhanced method for I-ELM (referred to as EI-ELM). At each learning

step, several hidden nodes are randomly generated and among them the hidden node leading to the largest residual error decrea-

sing will be added to the existing network and the output weight of the network will be calculated in a same simple way as in the

original I-ELM. Generally speaking, the proposed enhanced I-ELM works for the widespread type of piecewise continuous

hidden nodes.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Incremental extreme learning machine; Convergence rate; Random hidden nodes; Random search

1. Introduction

In the past decades single-hidden-layer feedforward
networks (SLFNs) (may or may not be neural based) have
been investigated extensively from both theoretical and
application aspects. SLFN network functions with n

hidden nodes can be represented by

f nðxÞ ¼
Xn

i¼1

bigiðxÞ ¼
Xn

i¼1

biGðx; ai; biÞ; ai 2 Cd ,

x 2 Cd ; bi 2 C; bi 2 C, ð1Þ

where gi or Gðx; ai; biÞ denotes the output function of the
ith hidden node and bi is the (output) weight of the

connection between the ith hidden node and the output
node. The hidden nodes of SLFNs can be neuron alike or
non-neuron alike, including additive or radial basis
function (RBF) type of nodes [8], multiplicative nodes,
fuzzy rules [10], fully complex nodes [15,19], hinging
functions [2], high-order nodes [5], ridge polynomials [22],
wavelets [3,4], Fourier terms [6], etc.
For the specific example of the standard single-hidden-

layer feedforward neural networks, three types of hidden
nodes have been mainly used:

(1) Additive hidden nodes:

giðxÞ ¼ gðai � xþ biÞ; ai 2 Rd ; bi 2 R, (2)

where g is the activation function of hidden nodes.
(2) RBF hidden nodes:

giðxÞ ¼ gðbikx� aikÞ; ai 2 Rd ; bi 2 R. (3)

ARTICLE IN PRESS

www.elsevier.com/locate/neucom

0925-2312/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2007.10.008

�Corresponding author. Tel.: +656790 4489; fax: +65 6793 3318.

E-mail address: egbhuang@ntu.edu.sg (G.-B. Huang).

URL: http://www.ntu.edu.sg/home/egbhuang (G.-B. Huang).



Author's personal copy

(3) Fully complex hidden nodes [15]:

giðxÞ ¼
Ysi

l¼1

gðail � xþ biÞ; ail 2 Cd ; x 2 Cd ; bi 2 C,

bi 2 C, ð4Þ

where si is an integer constant.

However, the output functions Gðx; ai; biÞ to be studied in
this paper can be non-neuron alike and can be different
from the above mentioned as long as they are nonlinear
and piecewise continuous.

Conventional neural network theories [18,21] show that
SLFNs with additive or RBF hidden nodes can work as
universal approximators when all the parameters of the
networks are allowed adjustable. However, tuning all the
parameters of the networks may cause learning compli-
cated and inefficient since tuning based learning may easily
converge to local minima and/or may generally be very
slow due to improper learning steps. Many iterative
learning steps may be required by such learning algorithms
in order to obtain better learning performance. It may be
difficult to apply tuning methods in neural networks with
nondifferentiable activation functions such as threshold
networks. Interestingly, different from the common under-
standing on the neural networks White [24] found that
‘‘random search’’ over input to hidden layer connections is
computationally efficient in SLFNs with affine transforma-
tion and no additional learning is required. Unlike the
conventional neural network theories, Huang et al. [8] have
recently proved that SLFNs with additive or RBF hidden
nodes and with randomly generated hidden node para-
meters ðai; bi)

1 can work as universal approximators by
only calculating the output weights bi linking the hidden
layer to the output nodes. In such SLFNs implementations,
the activation functions for additive nodes can be any
bounded nonconstant piecewise continuous functions and
the activation functions for RBF nodes can be any
integrable piecewise continuous functions. The resulting
method referred to as incremental extreme learning
machines (I-ELM) [8] randomly adds nodes to the hidden
layer one by one and freezes the output weights of the
existing hidden nodes when a new hidden node is added.
The original batch learning mode extreme learning
machines (ELM) [19,11–14] and their online sequential
learning mode ELM (OS-ELM) [10,20] are developed for
SLFNs with fixed network architectures. The activation
functions used in ELM include differentiable [11,13,14] and
nondifferentiable [12] functions, continuous [11,13,14] and
noncontinuous [12] functions, etc.

I-ELM [8] randomly adds nodes to the hidden layer one
by one and freezes the output weights of the existing
hidden nodes when a new hidden node is added. I-ELM [8]

is a ‘‘random search’’ method in the sense that in theory the
residual error of I-ELM will decrease and I-ELM moves
toward the target function further whenever a hidden node
is randomly added. Huang et al. [9] also shows its universal
approximation capability for the case of fully complex
hidden nodes. Huang et al. [7] recently proposed a convex
optimization method based incremental method to further
improve the convergence rate of I-ELM by allowing
properly adjusting the output weights of the existing
hidden nodes when a new hidden node is added. Huang
et al. [7] also extends the ELM from additive and RBF type
of SLFNs to ‘‘generalized’’ SLFNs (including those which
are usually not considered as the standard single-hidden
layer feedforward neural networks.) where any type of
piecewise continuous hidden nodes Gðx; ai; biÞ could be
used. These hidden nodes could include additive or RBF
type of nodes, multiplicative nodes, fuzzy rules, fully
complex nodes, hinging functions, high-order nodes, ridge
polynomials, wavelets, and Fourier terms, etc.
In this paper we propose a simple improved implementa-

tion of I-ELM in order to achieve a more compact network
architecture than the original I-ELM. Similar to the
original I-ELM, the improved I-ELM is fully automatic
in the sense that except for target errors and the allowed
maximum number of hidden nodes no control parameters
need to be manually set by users. Different from the
original I-ELM which is studied in the real domain, this
paper simply discusses the proposed enhanced I-ELM in
the complex domain which considers the real domain as its
specific case.

2. Proposed enhanced I-ELM

Let L2ðX Þ be a space of functions f in a measurable
compact subset X of the d-dimensional space Cd such that
jf j2 are integrable. For u; v 2 L2ðX Þ, the inner product hu; vi
is defined by hu; vi ¼

R
X

uðxÞvðxÞdx. The closeness between
network function f n and the target function f is measured
by the L2 distance:

kf n � f k ¼

Z
X

ðf nðxÞ � f ðxÞÞðf nðxÞ � f ðxÞÞdx

� �1=2
(5)

In this paper, the sample input space X is always
considered as a bounded measurable compact subset of
the space Cd .
The I-ELM [8] adds random nodes to the hidden layer

one by one and freezes the output weights of the existing
hidden nodes after a new hidden node is added. Denote the
residual error of f n as en � f � f n where f 2 L2ðX Þ is the
target function. Huang et al. [8] have proved (for X 2 Rd)
that:

Lemma 2.1 (Huang et al., [8]). Given any bounded

nonconstant piecewise continuous function g : R! R for

additive nodes or any integrable piecewise continuous

function g : R! R and
R
R

gðxÞdxa0 for RBF nodes, for

any continuous target function f and any randomly generated

ARTICLE IN PRESS

1In theory [8], from the function approximation point of view the

hidden node parameters of the single-hidden layer feedforward neural

networks are independent of the training data and of each other.

G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–3468 3461



Author's personal copy

function sequence fgng, limn!1 kf � f nk ¼ 0 holds with

probability one if

bn ¼
hen�1; gni

kgnk
2

. (6)

Lemma 2.1 shows that different from the common
understanding in neural networks, from the function
approximation point of view the hidden nodes of SLFNs
need not be tuned at all. In order to train SLFNs with
additive or RBF nodes one only needs to randomly assign
the hidden nodes (‘‘random searching’’) and analytically
calculate the output weights only. No tuning is required in
the training of SLFNs. Furthermore, the universal
approximation capability of ELM for fixed network
architectures [11–14] is the straightforward corollary of
Lemma 2.1. In fact, seen from the proof of [8], Lemma 2.1
is valid if and only if Gðx; a; bÞ is piecewise continuous and
spanfGðx; a; bÞ : ða; bÞ 2 Cd

� Cg is dense in L2. Based on
the same proof of [8] we can further extend [8] from the
standard single-hidden layer feedforward neural networks
(with additive or RBF hidden nodes) to ‘‘generalized’’
SLFNs f nðxÞ ¼

Pn
i¼1 biGðx; ai; biÞ with any type of hidden

nodes Gðx; ai; biÞ.

Theorem 2.1. Given a SLFN with any nonconstant piecewise

continuous hidden nodes Gðx; a; bÞ, if spanfGðx; a; bÞ :
ða; bÞ 2 Cd

� Cg is dense in L2, then for any continuous

target function f and any function sequence fgnðxÞ ¼

Gðx; an; bnÞg randomly generated based on any continuous

sampling distribution, limn!1 kf � ðf n�1 þ bngnÞk ¼ 0 holds

with probability one if

bn ¼
hen�1; gni

kgnk
2

. (7)

Proof. The proof method of I-ELM [8] can be adopted to
prove the validity of this theorem without any major
modification.

Similar to [8], for any function sequence fgnðxÞ ¼

Gðx; an; bnÞg randomly generated based on any continuous
sampling distribution we can prove that kenk ¼ kf�

ðf n�1 þ bngnÞk achieves its minimum if

bn ¼
hen�1; gni

kgnk
2

. (8)

Furthermore, when bn ¼
hen�1 ;gni

kgnk
2 , the sequence fkenkg

decreases and converges.
As spanfGðx; a; bÞg is dense in L2 and Gðx; a; bÞ is a

nonconstant piecewise continuous function, in order to
prove limn!þ1 kenk ¼ 0, seen from the proof of the
original I-ELM [8] we only need to prove en ? ðen�1 � enÞ.

According to formula (1), we have

en ¼ f � f n ¼ en�1 � bngn. (9)

Furthermore, we have

hen; gni ¼ hen�1 � bngn; gni ¼ hen�1; gni � bnkgnk
2. (10)

According to formula (8), we further have

hen; gni ¼ hen�1; gni �
hen�1; gni

kgnk
2
� kgnk

2

¼ hen�1; gni � hen�1; gni ¼ 0. ð11Þ

Thus, from formulas (9) and (11) we have hen; en � en�1i

¼ hen;�bngni ¼ 0, which means en ? ðen � en�1Þ.
This completes the proof of this theorem. &

Different from the convex optimization based incre-
mental extreme learning machine (CI-ELM) [7], Theorem
2.1 is valid for the case where all the output weights of the
existing hidden nodes are frozen when a new hidden node is
added.
It should be noted that although hidden nodes can be

added randomly some newly added hidden nodes may
make residual error reduce less and some newly added
hidden nodes may make residual error reduce more. Based
on this observation, in this paper we propose an enhanced
I-ELM algorithm. In this new method, at any step, among
k trial of hidden nodes, the hidden nodes with greatest
residual error reduction will be added, where k is a fixed
constant.

Theorem 2.2. Given an SLFN with any nonconstant piece-

wise continuous hidden nodes Gðx; a; bÞ, if spanfGðx; a; bÞ :
ða; bÞ 2 Cd

� Cg is dense in L2, for any continuous target

function f and any randomly generated function sequence

fgng and any positive integer k, limn!1 kf � f �nk ¼ 0 holds

with probability one if

b�n ¼
he�n�1; g

�
ni

kg�nk
2

, (12)

where f �n ¼
Pn

i¼1 b
�
i g�i , e�n ¼ f � f �n and

g�n ¼ fgijminðn�1Þkþ1pipnkkðf � f �n�1Þ � bngikg.

Proof. Given the function sequence fgng which is randomly
generated based on any continuous sampling distribution
probability, for fixed k we can choose an element of the nth
segment fgðn�1Þkþ1; . . . ; gnkg as g�n which minimizes
kðf � f �n�1Þ � bngik, i ¼ ðn� 1Þk þ 1; . . . ; nk.
Similar to [8], we can prove that ke�nk ¼ kf � ðf

�
n�1 þ

b�ng�nÞk achieves its minimum, and the sequence fkenkg

decreases and converges if b�n ¼
he�

n�1
;g�ni

kg�nk
2 .

As spanfGðx; a; bÞg is dense in L2 and Gðx; a; bÞ is a
nonconstant piecewise continuous function, seen from the
proof of the original I-ELM [8] (Lemmas II.5 and II.6 of [8]
are also valid for the sequence fg�ng

1
n¼1) in order to prove

limn!þ1 ke
�
nk ¼ 0 we only need to prove e�n ? ðe

�
n�1 � e�nÞ.

As e�n ¼ f � f �n ¼ e�n�1 � b�ng�n, we have

he�n; g
�
ni ¼ he

�
n�1 � b�ng�n; g

�
ni ¼ he

�
n�1; g

�
ni � b�nkg

�
nk

2. (13)

According to formula (12), we further have

he�n; g
�
ni ¼ he

�
n�1; g

�
ni �
he�n�1; g

�
ni

kg�nk
2
� kg�nk

2

¼ he�n�1; g
�
ni � he

�
n�1; g

�
ni ¼ 0. ð14Þ

ARTICLE IN PRESS
G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–34683462



Author's personal copy

Thus, we have he�n; e
�
n � e�n�1i ¼ he

�
n;�b

�
ng�ni ¼ 0, which

means e�n ? ðe
�
n � e�n�1Þ.

This completes the proof of this theorem. &

According to Theorem 2.2, when the nth hidden node is
added, the weight bn linking the new node to the output

node should be chosen as
he�

n�1
;g�ni

kg�nk
2 . In practice, it could not

be calculated since the exact functional form of e�n�1 is
unavailable. Similar to I-ELM [8], a consistent estimate of
the weight bn based on the training set is (originally
proposed by Kwok and Yeung [16] for the case where the
hidden nodes are not randomly added):

bn ¼
E �HT

H �HT
¼

PN
p¼1eðpÞhðpÞPN

p¼1h
2
ðpÞ

, (15)

where hðpÞ is the activation of the new hidden node for the
input of pth training sample and eðpÞ is the corresponding
residual error before this new hidden neuron is added. H ¼

½hð1Þ; . . . ; hðNÞ�T is the activation vector of the new node for
all the N training samples and E ¼ ½eð1Þ; � � � ; eðNÞ�T is the
residual vector before this new hidden node added. In real
applications, one may not really wish to get zero
approximation error by adding infinite neurons to the
network, a maximum number of hidden neurons is
normally given. Thus, such an incremental constructive
method2,3 for SLFNs can be summarized as follows:

EI-ELM Algorithm. Given a training set
@ ¼ fðxi; tiÞjxi 2 Cd ; ti 2 C; i ¼ 1; . . . ;Ng, hidden node out-
put function Gðx; a; bÞ, maximum number Lmax of hidden
nodes, maximum number k of trials of assigning ran-
dom hidden nodes at each step, and expected learning
accuracy �,

step 1 Initialization: Let L ¼ 0 and residual error E ¼ t,
where t ¼ ½t1; . . . ; tN �

T.

step 2 Learning step:

while LoLmax and kEk4�
(a) Increase by 1 the number of hidden nodes L:

L ¼ Lþ 1.
(b) for i ¼ 1 : k

(i) Assign random parameters ðaðiÞ; bðiÞÞ for the
new hidden node L according to any
continuous sampling distribution probability.

(ii) Calculate the output weight bðiÞ for the new
hidden node:

bðiÞ ¼
E �HT

ðiÞ

H ðiÞ �H
T
ðiÞ

. (16)

(iii) Calculate the residual error after adding
the new hidden node L:

EðiÞ ¼ E � bðiÞ �H ðiÞ. (17)

endfor

(c) Let i� ¼ fijmin1pipkkEðiÞkg. Set E ¼ EðiÞ,
aL ¼ aði�Þ, bL ¼ bði�Þ, and bL ¼ bði�Þ.

endwhile

3. Performance evaluation

In this section, the performance of the proposed
enhanced incremental learning algorithm is compared with
the original I-ELM on benchmark regression problems
from UCI database [1]. The specification of these bench-
mark problems are shown in Table 1. In our experiments,
all the inputs (attributes) have been normalized into the
range ½�1; 1� while the outputs (targets) have been normal-
ized into ½0; 1�. Neural networks are tested in I-ELM and its
enhancements EI-ELM. Popular additive and RBF hidden
nodes in the real domain space (a specific case of the

ARTICLE IN PRESS

Table 1

Specification of 16 benchmarking regression datasets

Name No. of observations Attributes

Training data Testing data

Abalone 2000 2177 8

Ailerons 7154 6596 39

Airplane 450 500 9

Auto price 80 79 15

Bank 4500 3692 8

Boston 250 256 13

California 8000 12 640 8

Census (House8L) 10 000 12 784 8

Computer activity 4000 4192 12

Delta ailerons 3000 4129 5

Delta elevators 4000 5517 6

Kinematics 4000 4192 8

Machine CPU 100 109 6

Puma 4500 3692 8

Pyrim 40 34 26

Servo 80 87 4

2White et al. in their seminal works [24,17,23,25] suggested to use

‘‘random hidden nodes’’ in the SLFNs augmented by connections from

the input layer to output layer): f nðxÞ ¼ y � xþ
Pn

i¼1 bigðai � xþ biÞ,

especially White [25] proposed an interesting incremental learning

algorithm named QuickNet. Similar to I-ELM and EI-ELM, QuickNet

randomly adds hidden nodes one by one. However, unlike I-ELM and EI-

ELM which only simply calculates the output weight of the newly added

hidden node, QuickNet readjusts the output weights of the existing hidden

nodes after a new hidden node is added which may require more

computational burden than I-ELM and EI-ELM. Simply speaking, EI-

ELM can be considered a further simplification of White’s incremental

methods [24,25].
3Instead of randomly adding hidden nodes, Kwok and Yeung [16] adds

the optimal hidden nodes one by one. Unlike White’s works [24,17,23,25]

and I-ELM and EI-ELM, optimization learning is required in Kwok and

Yeung [16]. When a new hidden node is added both Kwok and Yeung [16]

and EI-ELM do not readjust the existing hidden nodes and they compute

the output weights in a similar way: b�n ¼
he�

n�1
;g�ni

kg�nk
2 . The newly added node

g�n in EI-ELM will be as close to the optimal hidden node in Kwok and

Yeung [16] as required if the number of selecting trial k in EI-ELM is

sufficiently large. I-ELM is a specific case of EI-ELM when k ¼ 1. In this

sense EI-ELM has unified the I-ELM, Kwok and Yeung [16], and White’s

work [24,25].

G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–3468 3463



Author's personal copy

complex domain) are used. It should be noted that similar
results can be obtained in the complex domain as well. For
the sigmoid type of additive hidden nodes Gðx; a; bÞ ¼

1
1þe�ða�xþbÞ the hidden parameters a and b are randomly

chosen from the range ½�1; 1�. For the RBF hidden nodes
Gðx; a; bÞ ¼ expð�bkx� ak2Þ, the hidden node parameters
a are randomly chosen from the range ½�1; 1� whereas
the hidden node parameter b is randomly generated from
the range ð0; 0:5Þ. The target error is set as � ¼ 0:01. All the
simulations are running in MATLAB 6.5 environment and
the same PC with Pentium 4 2.99GHZ CPU and 1G
RAM. For each problem, the average results over 20 trials
are obtained for EI-ELM and I-ELM.

3.1. Comparison between EI-ELM and I-ELM with the

same number of hidden nodes

We first compare the generalization performance of EI-
ELM and I-ELM with the same number of hidden nodes.
Tables 2 and 3 show the performance of EI-ELM and
I-ELM with 200 additive and RBF nodes, respectively. The
close results obtained by different algorithms are under-
lined and the apparent better results are shown in boldface.
Seen from Tables 2 and 3, the testing root mean square
error (RMSE) of EI-ELM are generally much smaller than
that of the original I-ELM when both EI-ELM and I-ELM
use the same number of hidden nodes. It shows that EI-
ELM may achieve faster convergence rate than I-ELM
under the same nodes. This can also be verified from Fig. 1
which shows testing error curves of EI-ELM and I-ELM
for both Airplane and Census cases. Furthermore, as
observed from Tables 2 and 3, EI-ELM obtain much
smaller standard deviation of testing RMSE than I-ELM.

This means that the performance of EI-ELM is stabler
than I-ELM.
The training time curves for several cases are shown in

Fig. 2 (for sigmoid additive node case). Seen from Fig. 2,
the spent learning time is still linearly increasing with the
learning steps, which is the same as I-ELM’s conclusion.
Since the training time of I-ELM linearly increases with the
number of hidden nodes, in theory the training time of EI-
ELM should be around k times that of I-ELM when the
same number of hidden nodes are added, where k is
optimal trial times. In our simulations, we set k ¼ 10. The
training time of EI-ELM should be almost 10 times of
I-ELM. However, EI-ELM needs to seek for the most
appropriate parameters from k trials, furthermore, for all
the applications, we need to store some temp variables,
which normally use large memory. When memory reach

ARTICLE IN PRESS

Table 2

Performance comparison between EI-ELM and I-ELM (both with 200

sigmoid hidden nodes)

Name EI-ELM (sigmoid, k ¼ 10) I-ELM (sigmoid, k ¼ 1)

Mean Dev. Time (s) Mean Dev. Time (s)

Abalone 0.0818 0.0020 2.5801 0.0920 0.0046 0.2214

Ailerons 0.0558 0.0024 9.5017 0.1023 0.0353 0.7547

Airplane 0.0804 0.0039 0.5669 0.1016 0.0093 0.0499

Auto price 0.0896 0.0022 0.3141 0.0977 0.0069 0.0329

Bank 0.0631 0.0031 3.9838 0.1173 0.0068 0.3237

Boston 0.1055 0.0098 0.4332 0.1167 0.0112 0.0515

California 0.1494 0.0015 9.3336 0.1683 0.0049 0.5448

Census (8L) 0.0829 0.0012 11.476 0.0923 0.0023 0.8667

Computer activity 0.0941 0.0028 3.7511 0.1201 0.0125 0.2794

Delta ailerons 0.0445 0.0062 2.7735 0.0525 0.0078 0.2620

Delta elevators 0.0582 0.0032 3.7971 0.0740 0.0126 0.2708

Kinematics 0:1393 0.0028 3.4373 0:1418 0.0033 0.2810

Machine CPU 0:0466 0.0060 0.3112 0:0504 0.0079 0.0234

Puma 0:1840 0.0017 3.9531 0:1861 0.0041 0.3236

Pyrim 0.1414 0.0341 0.3062 0.1867 0.0628 0.0374

Servo 0.1518 0.0116 0.3235 0.1662 0.0124 0.0218

Table 3

Performance comparison between EI-ELM and I-ELM (both with 200

RBF hidden nodes)

Name EI-ELM (RBF, k ¼ 10) I-ELM (RBF, k ¼ 1)

Mean Dev. Time (s) Mean Dev. Time (s)

Abalone 0.0829 0.0027 5.6006 0.0938 0.0053 0.5030

Ailerons 0.0774 0.0129 36.016 0.1430 0.0298 3.2769

Airplane 0.0633 0.0057 0.9578 0.0992 0.0166 0.0751

Auto price 0.1139 0.0189 0.4031 0.1261 0.0255 0.0468

Bank 0.0730 0.0022 9.8079 0.1157 0.0097 0.7782

Boston 0.1077 0.0084 0.7972 0.1320 0.0126 0.0657

California 0.1503 0.0022 17.133 0.1731 0.0081 1.3656

Census (8L) 0.0810 0.0016 19.922 0.0922 0.0029 1.7928

Computer activity 0.1153 0.0021 10.092 0.1552 0.0282 0.8220

Delta ailerons 0.0448 0.0065 4.6169 0.0632 0.0116 0.4327

Delta elevators 0.0575 0.0047 7.3541 0.0790 0.0123 0.6321

Kinematics 0.1213 0.0017 8.3114 0.1555 0.0122 0.6953

Machine CPU 0.0554 0.0148 0.4114 0.0674 0.0177 0.0447

Puma 0.1752 0.0022 9.7983 0.1913 0.0180 0.7872

Pyrim 0.1209 0.0431 0.4423 0.2241 0.1752 0.0434

Servo 0.1379 0.0151 0.4031 0.1524 0.0200 0.0391

Fig. 1. The testing error updating curves of EI-ELM and I-ELM.

G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–34683464



Author's personal copy

computer’s choke-point, it will disturb CPU’s computation
remarkably. Especially for applications with large scale
data, the influence becomes more obvious. So the training
time relationship between EI-ELM and I-ELM should be
that the training time of EI-ELM should be k þ Z times of
I-ELM, where Z is impact factor determined by computing
environment, etc. The training time comparisons shown in
Tables 2 and 3 have verified our conclusion.

3.2. Comparison between EI-ELM and I-ELM with the

different number of hidden nodes

During our simulations we also studied the case where
EI-ELM and I-ELM are given different number of hidden

nodes. The comparison between EI-ELM with 50 hidden
nodes and I-ELM with 500 hidden nodes are shown in
Tables 4 and 5. Here we set k ¼ 10 and 20 for EI-ELM,
respectively. As observed from Tables 4 and 5, the
generalization performance obtained by EI-ELM with 50
hidden nodes are usually slightly better than those obtained
by I-ELM with 500 hidden nodes. It further demonstrates
that EI-ELM can converge faster than I-ELM. It can also
be seen that the training time spent by I-ELM with 500
hidden nodes and EI-ELM with 50 hidden nodes are in the
same order when k ¼ 10, which is consistent with our
previous analysis on the training time of EI-ELM.
However, compact network architecture implies faster
prediction time. It can be seen that EI-ELM with only 50
hidden nodes can achieve the similar results as I-ELM with
500 hidden nodes do. Fig. 3 shows the testing error curves
of I-ELM and EI-ELM with sigmoid activation functions
for the Abalone case. It can be seen that in order to obtain
the same testing RMSE 0.09, EI-ELM only needs 21 nodes
and spends 0.2722 s on training while I-ELM needs 331
nodes and spends 0.5231 s on training. Similar curves have
been found for other regression cases.

3.3. Effects of number of selecting trial factor k

Effects of number of selecting trials k on the perfor-
mance of EI-ELM have also been investigated in our study.
Figs. 4 and 5 show that the generalization performance and
stability of EI-ELM with 100 sigmoid hidden nodes will
become better when the number of selecting trials k

increases for the Airplane case. Fig. 6 shows the testing
RMSE curves of EI-ELM with increasing number of
hidden nodes and different number of selecting trials k. It
can be seen that the effect of number of selecting trials k on

ARTICLE IN PRESS

Fig. 2. Training time spent by EI-ELM is linearly increased with the

number of hidden nodes to be added.

Table 4

Performance comparison between EI-ELM with 50 Sigmoid hidden nodes and I-ELM with 500 sigmoid hidden nodes

Problems EI-ELM (50 sigmoid hidden nodes) I-ELM (500 sigmoid hidden nodes, k ¼ 1)

k ¼ 10 k ¼ 20

Mean Dev. Time (s) Mean Dev. Time (s) Mean Dev. Time (s)

Abalone 0:0878 0.0033 0.6506 0:0876 0.0015 1.5785 0:0876 0.0033 0.7695

Ailerons 0.0640 0.0066 2.3766 0.0571 0.0022 6.2519 0.0824 0.0232 1.8810

Airplane 0.0922 0.0061 0.1389 0:0862 0.0040 0.2921 0:0898 0.0067 0.1466

Auto price 0.0924 0.0112 0.0814 0.0897 0.0104 0.1658 0.0948 0.0158 0.0561

Bank 0.1066 0.0058 0.9965 0.0896 0.0036 3.1058 0.0757 0.0032 0.7914

Boston 0:1133 0.0101 0.1065 0:1102 0.0061 0.2232 0:1084 0.0096 0.1033

California 0:1591 0.0034 2.2423 0:1548 0.0033 4.9486 0:1543 0.0019 1.5665

Census (8L) 0:0899 0.0017 2.8655 0:0865 0.0011 6.1100 0:0871 0.0018 2.1199

Computer activity 0.1075 0.0057 0.9342 0.0991 0.0036 2.3311 0.1057 0.0078 0.7185

Delta ailerons 0:0474 0.0062 0.7006 0:0467 0.0042 1.4570 0:0468 0.0052 0.6340

Delta elevators 0.0615 0.0049 0.9502 0.0586 0.0038 2.5385 0.0640 0.0055 0.6516

Kinematics 0:1420 0.0029 0.8655 0:1416 0.0019 2.9017 0:1406 0.0014 0.7117

Machine CPU 0:0498 0.0155 0.0750 0:0467 0.0148 0.1577 0:0474 0.0040 0.0645

Puma 0:1846 0.0018 0.9856 0:1827 0.0017 2.7264 0:1856 0.0039 0.7983

Pyrim 0.1514 0.0419 0.0782 0.1300 0.0405 0.1533 0.1712 0.0626 0.0810

Servo 0.1634 0.0129 0.0795 0:1558 0.0121 0.1611 0:1589 0.0124 0.0642

G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–3468 3465



Author's personal copy

the generalization performance and its stability tend to
become stable after k increases up to certain number
(around 20 in Airplane case). The above observations are
true for the rest cases as well.

4. Conclusion

In this paper, inspired by the latest theory [8], we
proposed an enhanced random search based incremental
algorithm EI-ELM for I-ELM. Similar to I-ELM, EI-ELM
also randomly generates hidden nodes and then analyti-
cally determines the output weights. EI-ELM works for
different type of hidden node output functions instead of

neural networks only. It should be noted that I-ELM is a
specific case of EI-ELM when k ¼ 1. The difference
between I-ELM and EI-ELM is that at each learning step
among several randomly generated hidden nodes EI-ELM
picks the optimal hidden node which leads to the smallest
residual error. Compared with the original I-ELM, EI-
ELM can achieve faster convergence rate and much more
compact network architectures, which have been further
verified by the simulation results on some benchmark real-
world regression problems. Reasonably speaking, EI-ELM
could also be applied to the CI-ELM [7] straightforward,
the performance of EI-ELM with convex optimization is
worth investigating in the future.

ARTICLE IN PRESS

Table 5

Performance comparison between EI-ELM with 50 RBF hidden nodes and I-ELM with 500 RBF hidden nodes

Problems EI-ELM (50 RBF hidden nodes) I-ELM (500 RBF hidden nodes, k ¼ 1)

k ¼ 10 k ¼ 20

Mean Dev. Time (s) Mean Dev. Time (s) Mean Dev. Time (s)

Abalone 0:0907 0.0034 1.4036 0:0871 0.0023 3.0006 0:0872 0.0022 1.2121

Ailerons 0.0973 0.0229 9.0306 0.0775 0.0033 19.071 0.1129 0.0295 8.1818

Airplane 0.0943 0.0168 0.2347 0:0813 0.0102 0.5487 0:0772 0.0082 0.1940

Auto price 0.1187 0.0159 0.0998 0.1104 0.0148 0.2110 0.1231 0.0133 0.1189

Bank 0.0989 0.0031 2.4460 0:0888 0.0023 5.4199 0:0843 0.0058 1.9382

Boston 0.1197 0.0107 0.1845 0.1171 0.0078 0.3621 0.1214 0.0103 0.1872

California 0:1624 0.0049 4.2339 0:1579 0.0027 8.8326 0:1582 0.0027 3.8482

Census (8L) 0:0864 0.0026 4.9858 0:0846 0.0020 11.796 0:0860 0.0018 4.8536

Computer activity 0.1295 0.0068 2.4905 0.1201 0.0024 5.5878 0.1358 0.0177 2.1267

Delta ailerons 0.0469 0.0067 1.1800 0.0466 0.0039 2.4763 0.0544 0.0076 1.0361

Delta elevators 0.0603 0.0049 1.8515 0.0602 0.0039 4.2506 0.0685 0.0099 1.5399

Kinematics 0.1346 0.0025 2.0913 0.1306 0.0019 4.6727 0.1425 0.0095 1.7042

Machine CPU 0.0622 0.0281 0.1067 0.0511 0.0114 0.2031 0.0614 0.0274 0.0875

Puma 0.1789 0.0020 2.4465 0.1770 0.0012 5.2821 0.1850 0.0119 1.9709

Pyrim 0.1214 0.0345 0.1016 0.0989 0.0286 0.2079 0.2179 0.1545 0.1071

Servo 0.1487 0.0133 0.0985 0:1434 0.0120 0.1958 0:1410 0.0151 0.0982

Fig. 3. Testing RMSE performance comparison between EI-ELM and I-

ELM (with sigmoid hidden nodes) for Abalone case.

Fig. 4. Effect of number of selecting trials k on the generalization

performance of EI-ELM in airplane case.

G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–34683466



Author's personal copy

Acknowledgments

We would like to thank Halbert White, University of
California, San Diego, US, for the helpful discussions and
kind clarification on his significant seminal works.

References

[1] C. Blake, C. Merz, UCI repository of machine learning databases, in:

hhttp://www.ics.uci.edu/�mlearn/MLRepository.htmli, Department

of Information and Computer Sciences, University of California,

Irvine, USA, 1998.

[2] L. Breiman, Hinging hyperplanes for regression, classification, and

function approximation, IEEE Trans. Inf. Theory 39 (3) (1993)

999–1013.

[3] I. Daubechies, Orthonormal bases of compactly supported wavelets,

Commun. Pure Appl. Math. 41 (1988) 909–996.

[4] I. Daubechies, The wavelet transform, time–frequency localization

and signal analysis, IEEE Trans. Inform. Theory 36 (5) (1990)

961–1005.

[5] C.L. Giles, T. Maxwell, Learning, invariance, and generaliza-

tion in high-order neural networks, Appl. Opt. 26 (23) (1987)

4972–4978.

[6] F. Han, D.-S. Huang, Improved extreme learning machine for

function approximation by encoding a priori information, Neuro-

computing 69 (2006) 2369–2373.

[7] G.-B. Huang, L. Chen, Convex incremental extreme learning

machine, Neurocomputing 70 (2007) 3056–3062.

[8] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation

using incremental constructive feedforward networks with

random hidden nodes, IEEE Trans. Neural Networks 17 (4) (2006)

879–892.

[9] G.-B. Huang, M.-B. Li, L. Chen, C.-K. Siew, Incremental extreme

learning machine with fully complex hidden nodes, Neurocomputing,

2007, in press, doi:10.1016/j.neucom.2007.07.025.

[10] G.-B. Huang, N.-Y. Liang, H.-J. Rong, P. Saratchandran, N.

Sundararajan, On-line sequential extreme learning machine, in: The

IASTED International Conference on Computational Intelligence

(CI 2005), Calgary, Canada, July 4–6, 2005.

[11] G.-B. Huang, C.-K. Siew, Extreme learning machine: RBF network

case, in: Proceedings of the Eighth International Conference on

Control, Automation, Robotics and Vision (ICARCV 2004), vol. 2,

Kunming, China, 6–9 December, 2004, pp. 1029–1036.

[12] G.-B. Huang, Q.-Y. Zhu, K.Z. Mao, C.-K. Siew, P. Saratchandran,

N. Sundararajan, Can threshold networks be trained directly?, IEEE

Trans. Circuits Systems II 53 (3) (2006) 187–191.

[13] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine:

theory and applications, Neurocomputing 70 (2006) 489–501.

[14] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Real-time learning capability of

neural networks, IEEE Trans. Neural Networks 17 (4) (2006)

863–878.

[15] T. Kim, T. Adali, Approximation by fully complex multilayer

perseptrons, Neural Comput. 15 (2003) 1641–1666.

[16] T.-Y. Kwok, D.-Y. Yeung, Objective functions for training new

hidden units in constructive neural networks, IEEE Trans. Neural

Networks 8 (5) (1997) 1131–1148.

[17] T.-H. Lee, H. White, C.W.J. Granger, Testing for neglected

nonlinearity in time series modes: a comparison of neural network

methods and standard tests, J. Econ. 56 (1993) 269–290.

[18] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedfor-

ward networks with a nonpolynomial activation function can

approximate any function, Neural Networks 6 (1993) 861–867.

[19] M.-B. Li, G.-B. Huang, P. Saratchandran, N. Sundararajan, Fully

complex extreme learning machine, Neurocomputing 68 (2005)

306–314.

[20] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan,

A fast and accurate on-line sequential learning algorithm for

feedforward networks, IEEE Trans. Neural Networks 17 (6) (2006)

1411–1423.

[21] J. Park, I.W. Sandberg, Universal approximation using radial-basis-

function networks, Neural Comput. 3 (1991) 246–257.

[22] Y. Shin, J. Ghosh, Approximation of multivariate functions using

ridge polynomial networks,’’ in: Proceedings of the International

Joint Conference on Neural Networks (IJCNN’2002), Baltimore,

MD, USA, June 2002, pp. 380–385.

[23] M.B. Stinchcombe, H. White, Consistent specification testing with

nuisance parameters present only under the alternative, Econ. Theory

14 (1998) 295–324.

[24] H. White, An additional hidden unit test for neglected nonlinearity in

multilayer feedforward networks,’’ in: Proceedings of the Interna-

tional Conference on Neural Networks, 1989, pp. 451–455.

[25] H. White, Approximate nonlinear forecasting methods, in: G. Elliott,

C.W.J. Granger, A. Timmermann (Eds.), Handbook of Economics

Forecasting, Elsevier, New York, 2006, pp. 460–512.

ARTICLE IN PRESS

Fig. 5. Effect of number of selecting trials k on the stability of the

generalization performance of EI-ELM in airplane case.

Fig. 6. Testing RMSE updating progress with new hidden nodes added

and different number of selecting trials k in airplane case.

G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–3468 3467



Author's personal copy

Guang-Bin Huang received the B.Sc. degree in

applied mathematics and the M. Eng. degree in

computer engineering from Northeastern Uni-

versity, China, in 1991 and 1994, respectively,

and the Ph.D. degree in electrical engineering

from nanyang Technological University, Singa-

pore, in 1999. From June 1998 to May 2001, he

was a Research Fellow with the Singapore

Institute of manufacturing Technology (formerly

known as Gintic Institute of Manufacturing

Technology), where he led/implemented several

key industrial projects. Since then, he has been an Assistant Professor in

the School of Electrical and Electronic Engineering, Nanyang Technolo-

gical University. His current research interests include machine learning,

bioinformatics, and networking.

Dr. Huang is an Associate Editor of Neurocomputing and IEEE

Transaction on System, Man and Cybernetics—Part B: Cybernetics.

Lei Chen received the B.Sc. degree in applied

mathematics and the M. Sc. degree in operational

research and control theory from Northeastern

University, China, in 1999 and 2002, respectively.

He is currently working toward the Ph. D. degree

from Nanyang Technological University, Singa-

pore. His research interests include artificial

neural networks, pattern recognition, and ma-

chine learning.

ARTICLE IN PRESS
G.-B. Huang, L. Chen / Neurocomputing 71 (2008) 3460–34683468




