
Abstract—Extreme learning machine (ELM), which was orig-
inally proposed for “generalized” single-hidden layer feedfor-
ward neural networks (SLFNs), provides efficient unified 
learning solutions for the applications of feature learning, clus-
tering, regression and classification. Different from the com-
mon understanding and tenet that hidden neurons of neural 
networks need to be iteratively adjusted during training stage, 
ELM theories show that hidden neurons are important but 
need not be iteratively tuned. In fact, all the parameters of hid-
den nodes can be independent of training samples and  
randomly generated according to any continuous probability 
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distribution. And the obtained ELM networks satisfy universal 
approximation and classification capability. The fully connected 
ELM architecture has been extensively studied. However, 
ELM with local connections has not attracted much research 
attention yet. This paper studies the general architecture of 
locally connected ELM, showing that: 1) ELM theories are 
naturally valid for local connections, thus introducing local 
receptive fields to the input layer; 2) each hidden node in 
ELM can be a combination of several hidden nodes (a subnet-
work), which is also consistent with ELM theories. ELM the-
ories may shed a light on the research of different local recep-
tive fields including true biological receptive fields of which 
the exact shapes and formula may be unknown to human 
beings. As a specific example of such general architectures, ran-
dom convolutional nodes and a pooling structure are imple-
mented in this paper. Experimental results on the NORB 
dataset, a benchmark for object recognition, show that com-
pared with conventional deep learning solutions, the proposed 
local receptive fields based ELM (ELM-LRF) reduces the 
error rate from 6.5% to 2.7% and increases the learning speed 
up to 200 times.

I. Introduction

Machine learning and big data analysis have recently 
drawn great attentions from researchers in differ-
ent disciplinaries [1]–[5]. To the best of our 
knowledge, the success of machine learning relies 

on three key factors: powerful computing environments, rich 
and dynamic data, and efficient learning algorithms. More 
importantly, efficient machine learning algorithms are highly 
demanded in the big data applications.

Most conventional training methods designed for neural 
networks such as back-propagation (BP) algorithm [6] involve 
numerous gradient-descent searching steps and suffer from 
troubles including slow convergence rate, local minima, 
intensive human intervention, etc. Extreme learning 
machine (ELM) [7]–[13] aims to overcome these drawbacks 
and limitations faced by conventional learning theories and 
techniques. ELM provides an efficient and unified learning 
framework to “generalized” single-hidden layer feedforward 
neural networks (SLFNs) including but not limited to sig-
moid networks, RBF networks, threshold networks, trigo-
nometric networks, fuzzy inference systems, fully complex 
neural networks, high-order networks, ridge polynomial 
networks, wavelet networks, Fourier series, etc [9], [10], 
[13]. It presents competitive accuracy with superb efficiency 
in many different applications such as biomedical analysis 
[14], [15], chemical process [16], system modeling [17], [18], 
power systems [19], action recognition [20], hyperspectral 
images [21], etc. For example, ELM auto-encoder [5] out-
performs state-of-the-art deep learning methods in MNIST 
dataset with significantly improved learning accuracy while 
dramatically reducing the training time from almost one day 
to several minutes.

In almost all ELM implementations realized in the past 
years, hidden nodes are fully connected to the input nodes. 
Fully connected ELMs are efficient in implementation 
and produce good generalization performance in many 
applications. However, some applications such as image 
processing and speech recognition may include strong 
local correlations, and it is reasonably expected that the 
corresponding neural networks have local connections 
instead of full ones so that local correlations could be 
learned. It is known that local receptive fields actually lie in 
the retina module of biological learning system, which help 
consider local correlations of the input images. This paper 
aims to address the open problem: Can local receptive fields be 
implemented in ELM? ELM theories [9]–[11] prove that hidden 
nodes can be randomly generated according to any continuous 
probability distribution. Naturally speaking, in some applications 
hidden nodes can be generated according to some continuous 
probability distributions which are denser around some input 
nodes while sparser farther away. In this sense, ELM theories 
are actually valid for local receptive fields, which have not yet 
been studied in the literature.

According to ELM theories [9]–[11], local receptive fields 
can generally be implemented in different “shapes” as long ©
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as they are continuous and local-wise. However, from ap-
plication point of view, such “shapes” could be application 
type dependent. Inspired by convolutional neural networks 
(CNNs) [22], one of such local receptive fields can be imple-
mented by randomly generating convolutional hidden nodes 
and the universal approximation capability of such ELM can 
still be preserved. Although local receptive fields based ELM 
and CNN are similar in the sense of local connections, they 
have different properties as well:
1)	Local receptive fields: CNN uses convolutional hidden 

nodes for local receptive fields. To the best knowledge of 
ours, except for the biological inspiration, there is no theo-
retical answer in literature on why convolutional nodes can be 
used. However, according to ELM theories, ELM can flexibly 
use different types of local receptive fields as long as they are ran-
domly generated according to any continuous probability distribu-
tion. The random convolutional hidden node is one type 
of those nodes with local receptive fields that can be used 
in ELM. This paper actually builds the theoretical rela-
tionship between random hidden nodes and local recep-
tive fields. Especially from theoretical point of view, it 
addresses why random convolutional nodes can be used as 
an implementation of local receptive fields. On the other 
hand, ELM works for wide types of hidden nodes.

2)	Training: In general, similar to most conventional neural 
networks, all the hidden nodes in CNN need to be 

adjusted and BP learning methods are used 
in the tuning. Thus, CNN learning faces the 
problems inherited from BP algorithm such 
as local minima, time consuming and inten-
sive human intervention. In contrast, ELM 
with hidden nodes functioning within local 
receptive fields keeps the essence of ELM: 
the hidden nodes are randomly generated 

and the output weights are analytically calculated with 
minimum norm of output weights constraints, which 
provides a deterministic solution that is simpler, stable, 
and more efficient.

II. Reviews of Elm, Cnn and Htm
ELM is well-known and widely used for its high efficiency and 
superior accuracy [8], [12], [13], [23]. CNN is notably suitable 
for image processing and many other tasks which need to con-
sider local correlations [24]. Hierarchical temporal memory 
(HTM) intends to unravel the mystery of intelligence by pro-
viding a memory-based prediction framework [25]. This sec-
tion gives a brief review of ELM, CNN and HTM. Detailed 
reviews of ELM can be found in Huang et al. [13], [26].

A. Extreme Learning Machine (ELM)
ELM was initially proposed for single-hidden layer feedforward 
neural networks (SLFNs) [7]–[9] and then extended to the “gen-
eralized” SLFNs with wide types of hidden neurons [10]–[12]. 
Different from the common understanding of neural networks, 
ELM theories [9]–[11] show that although hidden neurons play 
critical roles, they need not be adjusted. Neural networks can 
achieve learning capability without iteratively tuning hidden 
neurons as long as the activation functions of these hidden neu-
rons are nonlinear piecewise continuous including but not lim-
ited to biological neurons. The output function of biological 
neurons may not be explicitly expressed with concrete closed-
form formula and different neurons may have different output 
functions. However, the output functions of most biological neu-
rons are nonlinear piecewise continuous which have been con-
sidered by ELM theories. Both Random Vector Functional-Link 
(RVFL) [27]–[32] and QuickNet [33]–[36] use direct links 
between the input layer and the output layer while using a spe-
cific ELM hidden layer (random sigmoid hidden layer). (Readers 
can refer to [13] for detailed analysis of the relationship and dif-
ferences between ELM and RVFL/QuickNet).

As shown in Fig. 1, ELM first transforms the input into 
hidden layer through ELM feature mapping. Then the out-
put is generated through ELM learning, which could be clas-
sification, regression, clustering, etc. [13], [37].

1) ELM feature mapping: The output function of ELM for 
generalized SLFNs is:
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where [ , , ]L
T

1 gb b b=  is the vector of the output weights be-
tween the hidden layer with L  nodes to the output layer with 
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Figure 1 Two-stage ELM architecture: ELM feature mapping and 
ELM learning. ELM feature mapping is usually formed by single or 
multi-type of random hidden neurons which are independent of 
training data. ELM learning focuses on calculating the output weights 
in some form which may be application dependent (e.g., feature 
learning, clustering, regression/classification, etc). Closed-form solu-
tions have been used in many applications.

Unlike the common tenet that hidden neurons need 
to be iteratively adjusted during training stage, ELM 
theories show that hidden neurons are important  
but need not be iteratively tuned in many types  
of neural networks.
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m 1$  nodes; and ( ) [ ( ), , ( )]h x x xh hL1 g=  is 
the output (row) vector of the hidden layer. 
Different activation functions may be used in dif-
ferent hidden neurons. In particular, in real ap-
plications ( )xhi  can be

	 ( ) ( , , ), ,x a x a Rh G b b Ri i i i
d

i! != � (2)

where ( , , )a xG b  is a nonlinear piecewise continuous function 
and ( , )a bi i  are the i -th hidden node parameters. Some com-
monly used activation functions are:

  i) Sigmoid function:
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 ii) Fourier function [9], [38]:

	 ( , , ) ( )a x a xsinG b b$= + � (4)

iii) Hardlimit function [9], [39]:
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iv) Gaussian function [9], [12]:

	 ( , , ) ( )a x x aexpG b b 2= - - � (6)

 v) Multiquadrics function [9], [12]:

	 ( , , ) ( )a x x aG b b /2 2 1 2= - + � (7)

To the best knowledge of ours, from 1950s to early this 
century, almost all the learning theories show that the hidden 
neurons of standard feedforward neural networks need to be 
tuned. In contrast, different from conventional artificial neural networks 
theories, ELM theories show that hidden neurons need not be tuned. 
One of its implementation is random hidden neurons. A neu-
ron is called a random neuron if all its parameters (e.g., ( , )a b  in 
its output function ( , , )a xG b ) are randomly generated based on 
a continuous probability distribution. ( )h x  actually maps the 
data from the d -dimensional input space to the L -dimensional 
hidden layer random feature space (also called ELM feature 
space) where the hidden node parameters are randomly gener-
ated according to any continuous probability distribution, and 
thus, ( )h x  is indeed a random feature mapping (also called 
ELM feature mapping).

2) ELM learning: From the learning point of view, un-
like traditional learning algorithms [6], [33], [40], ELM 
theories emphasize that the hidden neurons need not be ad-
justed, and ELM solutions aim to simultaneously reach the 
smallest training error and the smallest norm of output weights 
[7], [8], [12], [13]:

	 Minimize: H TCp q
1 2b b+ -
v v � (8)

where , , , , , , , , ,p q0 0 0 1 2 3 4> >1 2 g 3v v = +  ( ,p q  may 
not always be integer, e.g., , ,p q 2

1 g= ), and C  is the 
parameter controlling the trade-off between these two 
terms. Given a set of training samples ( , ), , , ,Hx t i N1i i g=  
is the hidden layer output matrix (nonlinear transformed ran-
domized matrix):
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and T is the training data target matrix:
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Numerous efficient methods can be used to calculate the out-
put weights b including but not limited to orthogonal projec-
tion methods, iterative methods [23], [41], [42], and singular value 
decomposition (SVD) [43]. A popular and efficient closed-form 
solution for ELM with p q 21 2v v= = = =  [12], [42], [44] is:
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ELM satisfies both universal approximation and classifica-
tion capability:

Theorem 2.1: Universal approximation capability [9]–[11]: 
Given any nonconstant piecewise continuous function as 
the activation function, if tuning the parameters of hidden 
neurons could make SLFNs approximate any target function 

( ),xf  then the sequence { ( )}xhi i
L

1=  can be randomly gener-
ated according to any continuous distribution probability, 
and ( ) ( )x xlim h f 0L i

L

i i1
b - ="3

=
/  holds with probability 

1 with appropriate output weights .b
Theorem 2.2: Classification capability [12]: Given any non-

constant piecewise continuous function as the activation func-
tion, if tuning the parameters of hidden neurons could make 
SLFNs approximate any target function ( ),xf  then SLFNs 
with random hidden layer mapping ( )xh  can separate arbi-
trary disjoint regions of any shapes.

Remark: For the sake of completeness, it may be better to 
clarify the relationships and differences between ELM and 
other related works: QuickNet [33]–[36], Schmidt, et al. [40], 
and RVFL [27]–[32]:
1)	Network architectures: ELM is proposed for “general-

ized” single-layer feedforward networks:

	 ( ) ( , , )x a xf G bL i
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As ELM has universal approximation capability for a wide 
type of nonlinear piecewise continuous function 

( , , ),a xG b  it does not need any bias in the output layer. 
Different from ELM but similar to SVM [45], the feedfor-
ward neural network with random weights proposed in 
Schmidt, et al. [40] requires a bias in the output node in 
order to absorb the system error as its universal approxi-
mation capability was not proved when proposed:

Single network architecture may be capable  
of feature learning, clustering, regression  
and classification.
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If the output neuron bias is considered as a bias neuron in 
the hidden layer as done in most conventional neural net-
works, the hidden layer output matrix for [40] will be

	 H H 1Schmidt, ( ) ELM for sigmoid basis.et al N m1992 = #6 @� (14)

where HELM for sigmoid basis  is a specific ELM hidden layer 
output matrix (9) with sigmoid basis, and 1N m#  is a N m#  
matrix with constant element 1. Although it seems that bias 
b  is just a simple parameter, its role has drawn researchers’ 
attention [13], [46], [47], and indeed from optimization 
point of view, to introduce a bias will result in a suboptimal 
solution [12], [13]. Both QuickNet and RVFL have the 
direct link between the input node and the output node:
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Different from Schmidt, et al.’s model and RVFL in which only 
sigmoid or RBF type of hidden nodes are used, each hidden 
node of ELM G(a, b, x) can even be a super node consisting of 
a subnetwork [10]. (Refer to Section III for details.)

2)	Objective functions: Similar to conventional learning algo-
rithms Schmidt, et al.’s model and RVFL focus on minimiz-
ing the training errors. Based on neural network 
generalization performance theory [48], ELM focuses on 
minimizing both training errors and the structural risk 
errors [7], [8], [12], [13] (as shown in equation (8)). As ana-
lyzed in Huang [13], compared to ELM, Schmidt, et al.’s 
model and RVFL actually provide suboptimal solutions.

3)	Learning algorithms: Schmidt, et al.’s model and RVFL 
mainly focus on regression while ELM is efficient for fea-
ture learning, clustering, regression and classification. ELM 
is efficient for auto encoder as well [5]. However, when 
RVFL is used for auto encoder, the weights of the direct 
link between its input layer to its output layer will become 
one and the weights of the links between its hidden layer 
to its output layer will become zero, thus, RVFL will lose 
learning capability in auto encoder cases too.

4)	Learning theories: The universal approximation and classi-
fication capability of Schmidt, et al.’s model have not been 
proved before ELM theories are proposed [9]–[11]. Its 
universal approximation capability will become apparent 
when ELM theory is applied. Igelnik and Pao [32] actually 
only prove RVFL’s universal approximation capability 
when semi-random hidden nodes are used, that is, the 
input weights a i  are randomly generated while the hidden 
node biases bi  are calculated based on the training samples 

x i  and the input weights .a i  In contrast to 
RVFL theories for semi-randomness, ELM 
theories show that i) Generally speaking, all 
the hidden node parameters can be randomly 
generated as long as the activation function is 
nonlinear piecewise continuous; ii) all the 
hidden nodes can be not only independent 

from training samples but also independent from each 
other; iii) ELM theories are valid for but not limited to 
sigmoid networks, RBF networks, threshold networks, 
trigonometric networks, fuzzy inference systems, fully 
complex neural networks, high-order networks, ridge 
polynomial networks, wavelet networks, Fourier series, 
and biological neurons whose modeling/shapes may be 
unknown, etc [9], [10], [13].

B. Convolutional Neural Network (CNN)
Convolutional neural network (CNN) is a variant of multi-
layer feedforward neural networks (or called multi-layer per-
ceptrons (MLPs)) and was originally biologically inspired by 
visual cortex [49]. CNN is often used in image recognition 
applications. It consists of two basic operations: convolution 
and pooling. Convolutional and pooling layers are usually 
arranged alternately in the network, until obtaining the high-
level features on which classification is performed. In addition, 
several feature maps may exist in each convolutional layer and 
the weights of convolutional nodes in the same map are shared. 
This setting enables the network to learn different features 
while keeping the number of parameters tractable.

Compared with traditional methods, CNN is less task spe-
cific since it implicitly learns the feature extractors rather than 
specifically designing them. The training of CNN usually relies 
on the conventional BP method, and thus CNN requires itera-
tive updates and suffers from trivial issues associated with BP.

1) Convolution: For a convolutional layer, regardless of which 
layer it is in the whole network, suppose that the size of the 
layer before is d d#  and the receptive field is .r r#  Valid con-
volution is adopted in CNN, where y  and x  respectively 
denote the values of convolutional layer and the layer before:
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where g  is a nonlinear function.
2) Pooling: Pooling is followed after convolution to reduce 

the dimensionality of features and introduce translational 
invariance into the CNN network. Different pooling meth-
ods are performed over local areas, including averaging and 
maxpooling [50].

C. Hierarchical Temporal Memory (HTM)
HTM is a general hierarchical memory-based prediction frame-
work inspired from neocortex [25]. It argues that the inputs into 
the neocortex are essentially alike and contain both spatial and 
temporal information. Firstly, the inputs arrive the lowest level, 

Hidden nodes can be generated according to some 
continuous probability distributions which are denser 
around some input nodes while sparser farther away, 
which naturally results in local receptive fields.
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primary sensory area, of the hierarchical 
framework. Then, they pass through the associ-
ation areas, where spatial and temporal patterns 
are combined. Finally, complex and high-level 
abstraction of the patterns are generated and 
stored in the memory. HTM shows that hier-
archical areas and different parts in the neocor-
tex are extraordinarily identical. And the intelligence could be 
realized through this hierarchical structure, solving different 
problems, including vision, hearing, touch, etc.

III. Local Receptive Fields Based  
Extreme Learning Machine
In this section, we propose the local receptive fields based ELM 
(ELM-LRF) as a generic ELM architecture to solve image pro-
cessing and similar problems in which different density of con-
nections may be requested. The connections between input 
and hidden nodes are sparse and bounded by corresponding 
receptive fields, which are sampled by any continuous probabil-
ity distribution. Additionally, combinatorial nodes are used to 
provide translational invariance to the network by combining 
several hidden nodes together. It involves no gradient-descent 
steps and the training is remarkably efficient.

A. Hidden Nodes in Full and Local Connections
ELM theories [9]–[11] proved that hidden nodes can be gener-
ated randomly according to any probability distribution. In 
essence, the randomness is two-folded:
1)	Different density of connections between input and hid-

den nodes are randomly sampled due to different types of 
probability distributions used in applications.

2)	The weights between input and hidden nodes are also 
randomly generated.

Fully connected hidden nodes, as shown in Fig. 2(a), have 
been extensively studied. Constructed from them, ELM 
achieves state-of-the-art performance for plenty of applications, 
such as remote sensing [51], time series analysis [52], text classi-
fication [53], action recognition [20], etc.

However, these works focus only on random weights, while 
ignoring the attribute of random connections. For natural images 
and languages, the strong local correlations may make the full con-
nections less appropriate. To overcome the problem, we propose to 
use hidden nodes which are locally connected with the input ones. 
According to ELM theories [9]–[11] the connections are ran-
domly sampled based on certain probability distributions, which 
are denser around some input nodes while sparser farther away.

B. Local Receptive Fields Based ELM
A locally dense connection example of ELM-LRF is given in 
Fig. 2(b) in which the connections between input layer and 
hidden node i  are randomly generated according to some 
continuous probability distribution, and some receptive field is 
generated by this random connections. The connections are 
dense around some input nodes and sparse farther away (yet 
do not completely disappear in this example).

Solid biological evidence also justifies the local receptive 
fields, which shows that each cell in the visual cortex is only 
sensitive to a corresponding sub-region of the retina (input 
layer) [54]–[56]. ELM-LRF learns the local structures and gen-
erates more meaningful representations at the hidden layer 
when dealing with image processing and similar tasks.

C. Combinatorial Node
Local receptive fields may have different forms in biological 
learning, and they may be generated in different ways using 
machine learning techniques. One of the methods is the combi-
natorial node suggested in ELM theory [10]. ELM shows that a 
hidden node in ELM could be a combination of several hidden 
nodes or a subnetwork of nodes. For example, local receptive 
fields shown in Fig. 3 could be considered as a case where com-
binatorial node i  is formed by a subnetwork (as grouped by the 
circle). The output of this subnetwork is actually a summation 
(which need not be linear) of the output of three hidden nodes 
linking to corresponding local receptive fields of the input layer.

Thus, the feature generated at one location (one particu-
lar hidden node) tends to be useful at different locations. 

Hidden Node i

Hidden Node i

(a) Hidden Node in Full Connection

(b) Hidden Node in Local Connection

Figure 2 ELM hidden node in full and local connections: Random 
connections generated due to various continuous distributions.

ELM theories may shed a light on the research of 
different local receptive fields including true biological 
receptive fields of which the exact shapes and formula 
may be unknown to human beings.
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Thus, the ELM-LRF network will be invariant to minor 
translations and rotations. Moreover, the connections 
between the input and combinatorial nodes may learn the 
local structures even better: denser connections around the 
input node because of the overlap of three receptive fields 
(see Fig. 3) while sparser farther away. Averaging and max-
pooling methods are straightforward to formulate these 
combinatorial nodes. Additionally, learning-based method is 
also potential to construct them.

IV. The Implementation of Local Receptive Fields

A. Specific Combinatorial Node of ELM-LRF
Although different types of local receptive fields and combina-
torial nodes can be used in ELM, for the convenience of imple-
mentation, we use the simple step probability function as the 

sampling distribution and the square/square-root pooling struc-
ture to form the combinatorial node. The receptive field of each 
hidden node will be composed of input nodes within a prede-
termined distance to the center. Furthermore, simply sharing 
the input weights to different hidden nodes directly leads to the 
convolution operation and can be easily implemented.

In this way, we build a specific case (Fig. 4) for the general 
ELM-LRF:
1)	Random convolutional node in the feature map in Fig. 4 is 

a type of the locally connected hidden node in Fig. 3.
2)	Node in the pooling map in Fig. 4 is an example of the 

combinatorial node shown in Fig. 3.

B. Random Input Weights
In order to obtain thorough representations of the input, K  
different input weights will be adopted and K  diverse feature 
maps are generated. And Fig. 5 depicts the implementation net-
work we use with all K  maps in this paper.

In Fig. 5, hidden layer is composed of random convolutional 
nodes. And the input weights of the same feature maps are 
shared while distinct among different maps. The input weights 
are randomly generated and then orthogonalized as follows:
1)	Generate the initial weight matrix A initt  randomly1. With 

the input size d d#  and receptive field ,r r#  the size of the 
feature map should be ( ) ( ) .d r d r1 1#- + - +
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2)	Orthogonalize the initial weight matrix A initt  using singular 
value decomposition (SVD) method. Columns of ,At  akt ’s, 
are the orthonormal basis of A initt 2.

The orthogonalization allows the network to extract a more 
complete set of features than non-orthogonal ones. Hence, the 
generalization performance of the network is further improved. 
Orthogonal random weights have also been used in [5], [57] 
and produce great results.

The input weight to the k-th feature map is ,a Rk
r r! #  

which corresponds to a Rk
r2!t  column-wisely. The convolu-

tional node ( , )i j  in the k-th feature map, ,c , ,i j k  is calculated as:
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Several works have demonstrated that CNN with certain 
structure is also able to present surprisingly good performance 
with ELM feature mapping (through nonlinear mapping after 
random input weights [22], [58], [59]). However, the perfor-
mance in these previous works are worse than fine-tuned ones. 
In this paper, the proposed ELM-LRF, where the input weights 

1In this specific random convolutional node case, we find that the bias is not required 
in the hidden nodes. And we generate the random input weights from the standard 
Gaussian distribution.
2In the case r 2 < K, orthogonalization cannot be performed on the column. Instead, 
the approximation method is used: 1) A

initt  is transposed; 2) orthogonalized;  
3) transposed back.

Figure 4 Although ELM-LRF supports wide type of local receptive 
fields as long as they are nonlinear piecewise continuous, a random 
convolutional node can be considered as a specific combinatorial 
node of ELM-LRF.

Local Receptive
Field

Combinatorial
Node

Input Map Feature Map k

Random Input
Weight ak

Pooling Map k

Pooling
Size e

Combinatorial Node i

Figure 3 The combinatorial node of ELM [10]: a hidden node can 
be a subnetwork of several nodes which turn out to form local recep-
tive fields and (linear or nonlinear) pooling.
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to the feature maps are orthogo-
nal random, can achieve even 
better performance than well-
trained counterpart. Additionally 
the relationship between ELM-
LRF and CNN will be dis-
cussed later.

C. Square/Square-Root 
Pooling Structure
The square/square-root pooling 
structure is used to formulate 
the combinatorial node. Pooling 
size e  is the distance between 
the center and the edge of the 
pooling area as shown in Fig. 5. 
And the pooling map is of the 
same size with the feature map 
( ) ( ) .d r d r1 1#- + - +  c , ,i j k  and 
h , ,p q k  respectively denote node 
( , )i j  in the k-th feature map and 
combinatorial node ( , )p q  in the 
k-th pooling map.

	
, , , ( )

if ( , ) is out of bound:

h c

p q d r
i j c

1 1
0

, , , ,
( )( )

, ,

p q k i j k
j q e

q e

i p e

p e
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g

=

= - +
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= -

+

= -
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//
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(19)

The square and summation operations respectively introduce 
rectification nonlinearity and translational invariance into the net-
work, which have been discovered to be the essential factors for 
successful image processing and similar tasks [60]. Furthermore, the 
square/square-root pooling structure followed convolution opera-
tion has been proved to be frequency selective and translational 
invariant [58]. Therefore, the implementation network we use in 
this paper will be especially suitable for image processing.

D. Closed-Form Solution Based Output Weights
The pooling layer is in full connection with the output layer 
as shown in Fig. 5. The output weights b  are analytically cal-
culated as in the unified ELM [12] using regularized least-
squares method [61].

For one input sample ,x  the value of combinatorial node 
h , ,p q k  is obtained by calculating (18) and (19) cascadingly:
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if ( , ) is out of bound:
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1 1
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(20)

Simply concatenating the values of all combinatorial nodes 
into a row vector and putting the rows of N  input samples 

together, we obtain the combinatorial layer matrix H  
:R ( )N K d r 1 2

! # $ - +

1)	if ( )N K d r 1 2$# - +

	 H I HH TC
T T 1

b = +
-` j � (21)

2)	 if ( )N K d r 1> 2$ - +

	 I H H H TC
T T1

b = +
-` j � (22)

V. Discussions

A. Universal Approximation and Classification Capability
ELM-LRF with local randomly connected hidden nodes can 
be regarded as a specific type of ELM:
1)	Different density of network connections can be built 

according to some type of continuous probability distribu-
tion. According to ELM theories (e.g., Theorems 2.1 and 
2.2), such networks still have universal approximation and 
classification capabilities.

2)	Disconnected input nodes and hidden nodes can be consid-
ered as connected by links with insignificant weights which 
can be neglected while dense connections are randomly 
generated with some type of continuous probability distri-
bution. Overall speaking, the probability distribution which 
is used to generate such connections is still continuous, and 
thus, ELM with such local receptive fields still remains its 
universal approximation and classification capabilities.

3)	Moreover, hidden nodes in ELM can be the combination 
of different computational nodes in linear or nonlinear 
manner, which naturally results in local receptive fields.

As those hidden nodes are usually nonliner piecewise con-
tinuous as stated in Theorems 2.1 and 2.2, their combinatorial 

Figure 5 The implementation network of ELM-LRF with K  maps.
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node ( , )p q  in the k-th pooling map h , ,p q k  can still generally be 
expressed as the basic form of ELM hidden node (2):

	 ( , , ), , , , ( )a xh G b p q d r1 1, , , ,p q k p q p q g= = - + � (23)

Apparently the function G  provided by the square/squareroot 
pooling structure is nonlinear piecewise continuous. Therefore, the 
universal approximation and classification capabilities are preserved 
for ELM-LRF, enabling it to learn sophisticated forms of input data.

B. Relationships with HTM and CNN
The implementation of ELM-LRF shares some resemblance 
with HTM [25] in the sense that through constructing the 
learning model layer-by-layer, they both mimic the brain to 
deal with increasingly complex forms of input. However, 
ELM-LRF is more efficient as the connections and input 
weights are both randomly generated while HTM might re-
quire to carefully design the network and tune the parameters.

In addition, the proposed ELM-LRF is also closely related 
to CNN. They both handle the raw input directly and apply 
local connections to force the network to learn spatial corre-
lations in natural images and languages. Subsequently, high-
level features are implicitly learned or generated, on which 
the learning is subsequently performed. However, several dif-
ferences exist between ELM-LRF and CNN:
1)	Local receptive fields: ELM-LRF provides more flexible and 

wider type of local receptive fields, which could be sampled 

randomly based on different types of probability distribu-
tions. However, CNN only uses convolutional hidden nodes. 
Although this paper simply chooses random convolutional 
nodes as a specific local receptive field of ELM-LRF, it is 
worth investigating other suitable local receptive fields and 
learning methods to formulate the combinatorial nodes as 
the local receptive fields in biological learning (e.g. brains) 
may be unknown but their learning capabilities have been 
guaranteed by ELM theories.

2)	Training: Hidden nodes in CNN need to be tuned and BP 
method is usually adopted. Thus, CNN faces the trivial issues 
associated with BP, such as local minima and slow conver-
gence rate. In contrast, ELM-LRF randomly generates the 
input weights and analytically calculates the output weights. 
Only the calculation of output weights involves major com-
putations, making ELM-LRF deterministic and efficient.

ELM feature mapping has also been used in some CNN net-
work implementation (with random convolutional weights) [58]. 
However, the feature maps and pooling maps are collectively used 
as the input to a support vector machine (SVM) for learning [58]. 
Our proposed ELM-LRF simply uses a genuine ELM architecture 
with combinatorial nodes as hidden nodes in ELM feature mapping 
stage while keeping the rest ELM learning mechanism unchanged.

VI. Experiments
The proposed ELM-LRF has been compared with state-of-the- 

art deep learning algorithms on 
NORB object recognition dataset 
[62], which is often used as a 
benchmark database by deep 
learning community. NORB 
dataset contains 24300 stereo 
images for training and 24300 ste-
reo images for testing, each 
belonging to 5 generic categories 
with many variabilities such as 3D 
pose and lighting. Fig. 6 displays 
some examples from the dataset. 
Each sample has 2 images (left and 
right sides) with normalized object 
size and uniform background. We 
downsize them to 32 32#  with-
out any other preprocessing.

The experimental platform is 
MATLAB 2013a, Intel Xeon 
E5-2650, 2GHz CPU, 256GB 
RAM. In ELM-LRF, parameters 
that need to be tuned include: 1) 
size of receptive field { ,4 4#  
6 6# }; 2) number of feature maps 
{24, 36, 48, 60}; 3) pooling size {1, 
2, 3, 4}; 4) value of C  {0.01, 0.1, 1, 
10, 100}. We use a hold-out valida-
tion set to choose the optimal 
parameters and list them in Table 1.

Figure 6 60 samples of NORB dataset.

Four-
Legged
Animals

Four-
Legged
Animals

Human
Figures

Airplanes Trucks Cars
Human
Figures

Airplanes Trucks Cars

Table 1 Optimal parameters.

DATASET
# OF TRAINING 
DATA

# OF TESTING 
DATA

INPUT 
DIMENSIONS

RECEPTIVE 
FIELD

# OF FEATURE 
MAPS

POOLING 
SIZE C

NORB 24300 24300 32 #  32 #  2 4 #  4 48 3 0.01



may 2015 | IEEE Computational intelligence magazine    27

A. Test Error
The test errors of other algorithms have been reported in liter-
ature and summarized in Table 23. ELM-LRF produces better 
accuracy than other fine-tuned algorithms that requires much 
more computations. Compared with the conventional deep 
learning solutions, CNN and DBN, the proposed ELM-LRF 
reduces the test error rate from 6.5% to 2.74%. Our proposed 
ELM-LRF achieves the best accuracy compared to those results 
reported in literature with a significant gap.

B. Training Time
For the training time, other algorithms are reproduced on our 
experimental platform to conduct a fair comparison. As shown 
in Table 3, ELM-LRF learns up to 200 times faster than other 
algorithms. And even compared with the random weights 
method [58], which is the current most efficient algorithm, 
ELM-LRF still achieves 4.48 times speedup and reaches much 
higher testing accuracy.

C. Feature Maps
Fig. 7 uses one data sample (airplane, the left image) for illustra-
tion. And it also displays the corresponding 48 feature maps 

3Although we tried to reproduce the results of other algorithms, we find that it is hard 
to reach similar accuracy as reported in literature due to tedious parameters tuning 
and time-consuming human intervention in conventional deep learning methods.

generated in the hidden layer. It can be observed that the out-
lines of these feature maps are similar, as they all are generated 
from the same input image (an airplane). However, each map 
has its distinct highlighted part such that diverse representations 
of the original image are obtained. Collectively, these feature 
maps represent different abstractions of the original image, 
making the subsequent classification easy and accurate.

D. Orthogonalization of Random Input Weights
In our experiments, we have also investigated the contribu-
tion of orthogonalization after the random generation of 
input weights. The values of the center convolutional nodes 
in the 48 feature maps are taken for example. The value dis-
tributions generated by orthogonal and non-orthogonal ran-
dom weights are shown in Fig. 8. One data sample is picked 
from each generic category. As observed from Fig. 8, the dis-
tribution of orthogonal random weights spreads more broadly 
and evenly. It is similar for convolutional nodes occupying 
other positions in the feature maps. Therefore, orthogonaliza-
tion will make the objects more easily to be linearly separated 
and classified.

In addition, even without orthogonalization, ELM-LRF can 
still achieve 4.01% test error, which is 38% decrease comparing 
to conventional deep learning methods, as shown in Table 2. 
Moreover, if considering the superb efficiency, ELM-LRF (no 

Table 3 Training time comparison.

ALGORITHMS
TRAINING 
TIME (s)

SPEEDUP 
TIMES1

ELM-LRF 394.16 217.47
ELM-LRF (NO ORTHOGONALIZATION) 391.89 218.73
RANDOM WEIGHTS2 (ELM feature  
mapping + SVM classifier)

1764.28 48.58

K-MEANS + SOFT ACTIVATION3 6920.47 12.39
TILED CNN4 15104.55 5.67
CNN5 53378.16 1.61
DBN6 85717.14 1
1DBN is used as the standard to calculate the speedup times. 
2�The latest fastest CNN solution. The training time reported in [58] is 
0.1h. Reasons for such difference in training time are: i) we have con-
sidered convolution and pooling operations as part of training, and 
the training time reported includes the time spent on convolution and 
pooling, which were not considered in [58]; ii) experiments are run in 
different experimental platforms.

3Use the same parameters as in [60] with 4000 features.
4�Use the same architecture as ELM-LRF and set the maximum number of 
iterations in the pretraining to 20.

5�The architecture is provided in [62] and we use 50 epochs.
6�The architecture is: 2048 (input)-500-2000-500-5 (output) and 500 epochs 
since the convergence of training error is slow when dealing with 
NORB dataset.

Figure 7 One sample: the original image (left) and corresponding 
feature maps.

(a) The Original Image (Left One)

(b) The 48 Feature Maps

Table 2 Test error rates of different algorithms.

ALGORITHMS TEST ERROR RATES
ELM-LRF 2.74%
ELM-LRF (NO ORTHOGONALIZATION) 4.01%
RANDOM WEIGHTS [58] 
(ELM feature mapping + SVM classifier)

4.8%

K-MEANS + SOFT ACTIVATION [60] 2.8%
TILED CNN [57] 3.9%
CNN [62] 6.6%
DBN [63] 6.5%
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orthogonalization) is also an excellent solution for image pro-
cessing and similar applications.

VII. Conclusions
This paper studies the local receptive fields of ELM (ELM-
LRF) which naturally results from the randomness of hidden 
neurons and combinatorial hidden nodes suggested in ELM 
theories. According to ELM theories, different types of local 
receptive fields can be used and there exists close relationship 
between local receptive fields and random hidden neurons. The 
local connections between input and hidden nodes may allow 
the network to consider local structures and combinatorial 
nodes further introduce translational invariance into the net-
work. Input weights are randomly generated and then orthog-
onalized in order to encourage a more complete set of features. 
The output weights are calculated analytically in ELM-LRF, 
providing a simple deterministic solution.

In the implementation, we construct a specific network for 
simplicity using the step function to sample the local connec-
tions and the square/square-root pooling structure to formulate 
the combinatorial nodes. Surprisingly random convolutional 
nodes can be considered an efficient implementation of local 
receptive fields of ELM although many different types of local 
receptive fields are supported by ELM theories. Experiments 
conducted on the benchmark object recognition task, NORB 
dataset, show that the proposed ELM-LRF presents the best 
accuracy in the literature and accelerate the training speed up to 
200 times compared to popular deep learning algorithms.

ELM theories show that different local receptive fields in 
ELM-LRF (and biological learning mechanisms) may be gen-
erated due to different probability distribution used in generat-
ing random hidden neurons. It may be worth investigating in 
the future: 1) the impact of different ELM local receptive fields; 
2) the impact of different combinatorial hidden nodes of ELM; 

3) stacked network of ELM-LRF modules performing unsu-
pervised learning on higher-level abstractions.

Strictly speaking, from network architecture point of view, 
this paper simply uses one hidden layer of ELM although a 
combinatorial hidden layer is used. Stacked networks have been 
extensively investigated, such as stacked autoencoders (SAE), 
deep belief network (DBN) and convolutional DBN [63]–[66]. 
It deserves further exploration to construct the stacked net-
work of ELM-LRF, by performing subsequent local connec-
tions on the output of the previous combinatorial layer. The 
stacked network will capture and learn higher-level abstrac-
tions. Thus, it should be able to deal with even more complex 
forms of input. In addition, unsupervised learning method, 
such as ELM Auto-Encoder (ELM-AE) [5], might be helpful 
for the stacked network to obtain more abstract representations 
without losing salient information.
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