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Outline

* PartI- ELM Philosophy and Generalized SLFN Cases:

- Neural networks and machine learning history
- Rethink machine learning and artificial intelligence

— Philosophy and belief of Extreme Learning Machines (ELM)

* Do we really need so many different type of learning algorithms for
so many type of networks (various types of SLFNs, regular and
irregular multi-layers of networks, various type of neurons)?

* Can the gap between machine learning and biological learning be
filled?

* Should learning be transparent or of blackbox?

* SVM provides suboptimal solutions.

- Machine learning and Internet of Things

- Machine intelligence and human intelligence



Outline

e Part II - Hierarchical ELM

— Unsupervised/semi supervised ELM
- Feature learning

— Hierarchical ELM

- ELM + (other algorithms)

e Part III - ELM Theories and Open Problems
-~ ELM theories:

* Universal approximation capability

* Classification capability
- Incremental learning
- Online sequential learning

-~ Open problems
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Part 1

ELM Philosophy and Generalized
SLEN Cases




Frank Rosenblatt: Perceptron

* Cognition Dream in 60 Years Ago ...

- “Rosenblatt made statements about the perceptron
that caused a heated controversy among the
fledgling AI community.”

- Cognition: “Based on Rosenblatt's statements, The
New York Times reported the perceptron to be
"the embryo of an electronic computer that [the
Navy] expects will be able to walk, talk, see, write,
reproduce itself and be conscious of its existence”

http:/ /en.wikipedia.org/wiki/Perceptron 1 A8 +




Perceptron and Al Winter

e “Al Winter” in 1970s

- “Beautiful mistakes” [Minsky and Papert 1969]: Minsky claimed in his book that
the simple XOR cannot be resolved by two-layer of feedforward neural
networks, which “drove research away from neural networks in the
1970s, and contributed to the so-called Al winter.” [Wikipedia2013]




Three Waves of Machine Learning

2010 — Present: Data
driven

Features: computers

1980s-2010: Research powerful enough,
driven powerful and smart
computing
sensors/devices
Features: computers everywhere, huge data
very powerful, many coming. Efficient
efficient algorithms algorithms under way

developed, no enough

: Situation; No matter
® 19505-1980s: Warm up data in many cases

you admit or not, we

Situation: more driven have to rely on machine
by researchers instead of learning from now on
Features: computers not industries

powerful, no efficient
algorithms, no enough
data

Situation: Chinese
people already had good
dream since the inception
of computers and called
computers as “Electronic

Brains ( BB ) ”




Rethink Artificial Intelligence and
Machine Learning

Machine Learning

Artificial Intelligence

biological

Neural Networks reviving
Almost all Deep Learning
Rosenblatt’s (CNN, BP, etc) techniques

perceptron proposed ) proposed in 1980s
in 1950s Al Winter

(1970s)

ELMs born in 2004
Deep Learning reviving in 2004
due to high performance of computing

SVM proposed
in 1990s

1950s 1970s 1980s 2010 Present




Necessary Conditions of Machine
Learning Era

Rich
dynamic
Powerful data
computing
enwmisnment

Efficient
learning
algorithms

¥

Three necessary conditions of true
machine learning era, which have
been fulfilling since 2010




Feedforward Neural Networks

i
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Output of additive hidden nodes:
G(ai, birx) = g(ai "X+ bl)

Output of RBF hidden nodes:
G(air bi, X) = g(bl ”X —d; ”)

The output function of SLFNSs is:
L
A6 =) BiGay by
=

B;: Output weight vector
connecting the ith hidden node and
the output nodes
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Feedforward Neural Networks

e Mathematical Model

- Approximation capability [Leshno 1993, Park and Sandberg 1991]: ANy
continuous target function f(x) can be approximated by SLFNs
with adjustable hidden nodes. In other words, given any small
positive value ¢, for SLFNs with enough number of hidden nodes

(L) we have ||f;(xX) — f(X)]| < e.

— Classification capability [Huang, etal 20001: As long as SLFNs can
approximate any continuous target function f (x), such SLFNs can
differentiate any disjoint regions.

M. Leshno, et al., “Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,” Neural
Networks, vol. 6, pp. 861-867, 1993.

J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Computation
1991.

G.-B. Huang, et al, “Classification ability of single hidden layer feedforward neural networks,” IEEE T
no. 3, pp. 799-801, May 2000.
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Feedforward Neural Networks

* Learning Issue

- Conventional theories: only resolves the existence issue, however,
does not tackle learning issue at all.

- Inreal applications, target function f is usually unknown. One
wishes that unknown f could be approximated by SLFNs f;
appropriately.

12



Feedforward Neural Networks

* Learning Methods

Many learning methods mainly based on gradient-descent / iterative
approaches have been developed over the past three decades.

* Back-Propagation (BP) [Rumelnart 1986] and its variants are most popular.

Least-square (LS) solution for RBF network, with single impact factor for
all hidden nodes. [Broomhead and Lowe 1988]

QuickNet (white, 1988) and Random vector functional network (RVFL) [1gelnik
and Pao 1995]

Support vector machines and its variants. [Cortes and Vapnik 1995]

Deep learning: dated back to 1960s and resurgence in mid of 2000s [wiki
2015]
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Support Vector Machine — an
Alternative Solution of SLFN

SVM optimization formula

1 N
Tf(X) minimize: L, = > lw||? + C &;
i=1
subjectto: t;(W-¢p(xX) +b) =1 —¢;, Vi
& =>0,Vi

LS-SVM optimization formula
L 1o, AN
minimize: L, = > llw||* + szizlﬁ
subjectto: t;(w-p(x) +b) =1 —¢&;, Vi

The decision function of SVM and LS-SVM is:

N
Typical kernel function: f(x) = sign (25=1a5t51((x, x.) + b
K(xy) = exp(—yllx —ylI*)
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Feedforward Neural Networks

* Interesting 20 Years of Cycles

- Robenblatt’s Perceptron proposed in mid of 1950s, sent to “Winter” in
1970s

- Back-Propagation (BP) proposed in 1970s, reaching research peak in mid
of 1990s

- Support vector machines proposed in 1995, reaching research peak early
this century.

* There are exceptional cases:

- E.g, most deep learning algorithms proposed in 1960s ~1980s,
becoming popular only since 2010 (more or less)

15



Research in Neural Networks Stuck ...7?

Conventional Learning Methods Biological Learning

Very sensitive to network size Stable in a wide range (tens to thousands
of neurons in each module)

Difficult for parallel implementation Parallel implementation

Difficult for hardware implementation “Biological” implementation

Very sensitive to user specified parameters Free of user specified parameters

Different network types for different type of
applications

One module possibly for several
types of applications

Time consuming in each learning point Fast in micro learning point

Difficult for online sequential learning Nature in online sequential learning

“Greedy” in best accurac Fast speed and high accurac
y y P & y

“Brains (devised by conventional learning Brains are built before applications
methods)” are chosen after applications are
present




Research in Neural Networks Stuck ...7?

e Reasons

- Based on the conventional existence theories:

* Since hidden nodes are important and critical, we need to find some
way to adjust hidden nodes.

* Learning focuses on hidden nodes.

* Learning is tremendously inetficient.

- Intensive research: many departments/groups in almost every
university /research institution have been spending huge
manpower on looking for so-called “appropriate” (actually still
very basic) learning methods in the past 30 years.

* Question

— Is free lunch really impossible?

- The answer is “seemingly far away, actually
right under nose” “ & /& X #, ¥ 15 AR 7]~




Fundamental Problems to Be Resolved
by Extreme Learning Machines (ELM)

* Do we really need so many different types of learning
algorithms for so many different types of networks?

- different types of SLFNs

* sigmoid networks

RBF networks

polynomial networks

complex (domain) networks
* Fourier series

e wavelet networks, etc

- multi-layers of architectures

* Do we really need to tune wide type of hidde
including biological neurons (even wh
unknown) in learning?



Extreme Learning Machines (ELM)

Output function of “generalized” SLFNs:

L
folx) = Z BiG(a;, by, x)
Feature learning =1
Clustering
Regression
T Classification

The hidden layer output function (hidden
layer mapping, ELM feature space):

h(X) = [G (31, blr X)! Y G(aLr bL! x)]

The output functions of hidden nodes can be
but are not limited to:

L Random Hidden Neurons (which need not be algebraic Sigmoid: G(a; b;,x) = g(a; -x+ b;)
sum based) or other ELM feature mappings. Almost any . _

nonlinear piecewise continuous hidden nodes: RBF: G(ay by, x) = g(billx — a;
hi (X) = Gi (air bi, X)

Although we don’t know biological neurons’ true output
functions, most of them are nonlinear piecewise
continuous, covered by ELM theories.

Fourier Series: G (a;, b;

19



Extreme Learning Machines (ELM)

* New Learning Theory - Learning Without Iteratively Tuning Hidden
Neurons in general architectures: Given any nonconstant piecewise
continuous function g, if continuous target function f(x) can be
approximated by SLFNs with adjustable hidden nodes g then the

hidden node parameters of such SLFNs needn’t be tuned. [Huang, et al 2006,
2007]

- It not only proves the existence of the networks but also provides learning
solutions.

— All these hidden node parameters can be randomly generated without training data.

- That is, for any continuous target function f(x) and any randomly generated
sequence {(a;, b)i-q}, lim [[f (%) = f )l = lim [|f(x) — X, B:G (@, by, )| = 0 holds
with probability one if B; is chosen to minimize ||f(x) — f (X)|[, Vi. tuang eta1 2006

* Direct biological evidence later found in 2013 [rusi, 2013]

G.-B. Huang, et al., “Universal approximation using incremental constructive feedforward networks with random hi
IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
G.-B. Huang and L. Chen, “Convex Incremental Extreme Learning Machine,” Neurocomputing, vol. 7 ’ 062, 2007.
O. Barak, et al, "The importance of mixed selectivity in complex cognitive tasks,” Nature, vol.
M. Rigotti, et al, "The sparseness of mixed selectivity neurons controls the generalizatj
Neuroscience, vol. 33, no. 9, pp. 3844-3856, 2013

20



Extreme Learning Machines (ELM)

ELM random feature
mapping: h(x)

h(x)

Input space ELM feature space

L Random Hidden Neurons (which need not be algebraic
sum based) or other ELM feature mappings. Almost any
nonlinear piecewise continuous hidden nodes:

hi (X) = Gi (air bii X)

Although we don’t know biological neurons’ true output
functions, most of them are nonlinear piecewise
continuous, covered by ELM theories.

The hidden layer output function (hidden
layer mapping, ELM feature space):

h(X) — [G(ali bli X), Y G(aLi bL! x)]

The output functions of hidden nodes can be
but are not limited to

Sigmoid: G(a; b;,x) = g(a; - X+ b;)
RBE: G(a;, b;,x) = g(b;llx —a;l)

Fourier Series: G(a;, b;, X) = cos(a; - X + b;)

Conventional Random Projection is just a

specific case of ELM random feature mapping
(ELM feature space) when linear additive
hidden node is used.

Random Projecti b, X) = a; - X

21



Extreme Learning Machines (ELM)

ELM random feature
mapping: h(x)

h(x)

Input space ELM feature space

Almost any nonlinear piecewise continuous hidden
nodes: h;(x) = G;(a;, b;, x), including sigmoid
networks, RBF networks, trigonometric, networks,
threshold networks, fuzzy inference systems, fully
complex, neural networks, high-order networks, ridge
polynomial networks, wavelet networks, convolutional
neural networks, etc..

The hidden layer output function (hidden
layer mapping, ELM feature space):

h(X) — [G(ali bli X), Y G(aLi bL! x)]

The output functions of hidden nodes can be
but are not limited to

Sigmoid: G(a; b;,x) = g(a; - X+ b;)
RBE: G(a;, b;,x) = g(b;llx —a;l)

Fourier Series: G(a;, b;, X) = cos(a; - X + b;)

Convolutional nodes

Conventional Random Projection is just a
specific case of ELM random featur
(ELM feature space) when li
hidden node is used.

G(ai,bi,x) = a; - X22



Extreme Learning Machines (ELM)

* Essence of ELM
- Hidden layer need not be tuned.

* “randomness” is just one of ELM’s implementation, but not all

* Some conventional methods adopted “semi-randomness”

- Hidden layer mapping h(x) satisfies universal approximation
conditions.

- Minimize:||[HB — T|[, and ||Bll4
* (norm p and q could have different values, g = 1,;, 2,+)

— It satisfies both ridge regress theory [Hoerl and Kennard 1970] and neural
network generalization theory [sartlett 199].

— It fills the gap and builds bridge among neural networks, SVM
random projection, Fourier series, matrix theories, line
etc.

23



Basic ELM — a L2 Norm Solution

® Three-Step Learning Model [Huang, et al 2004, 2006]

Given a training set {(xi,ti)|xl- e R4 t; e R™,i =1,--,N}, hidden
node output function G (a, b, x), and the number of hidden nodes L,

1) Assign randomly hidden node parameters(a;, b;),i = 1, L.
h(x;)

2) Calculate the hidden layer output matrix H=| : |.
_h(XN)_

3) Calculate the output weights f.

ELM Web portal: www.extreme-learning-machines.or

24



Extreme Learning Machines (ELM)

e Salient Features

“Simple Math is Enough.” ELM is a simple tuning-free three-step
algorithm. 4 T@.

The learning speed of ELM is extremely fast. g

i
Y e i
) T
| & A
'-f.

Unlike conventional existence theories, the hidden node parameters
are not only independent of the training data but also of each other.
Although hidden nodes are important and critical, they need not
be tuned.

Unlike conventional learning methods which MUST see the
training data before generating the hidden node parameters, ELM
could generate the hidden node parameters before seeing the training
data.

Homogenous architectures for compression, feature le
clustering, regression and classification.

25



Extreme Learning Machines (ELM)

* Ridge regression theory based ELM
-1

f(x) = h(x)B = h)HT(HHT) ' T = h(x)HT (é + HHT) T

and
-1
f(x) = h(x)B = h(x)(HTH)_lHTT = h(x) (é + HTH) HTT

* Equivalent ELM optimization formula
« e . 1 1
Minimize: Lp,, .= - IBII* + € - XL, 1€ 11

subject to: h(x;)B = t; + &, Vi

26



Extreme Learning Machines (ELM)

* Valid for both kernel and non-kernel learning

— Non-kernel based:
I -1
f(x)—h(x)HT( +HHT) T

and
-1
f(x) = h(x) ( + HTH) HTT
K(x,x4) : 1 1
- Kernel based (if h(x) is unknown): f(x) = : (E + 0 ELM) T
K(x,xy)

where .QELMU = h(x;) - h(Xj) — K(Xi' Xf)




Image Super-Resolution by ELM

I'CB_i[_S] KR[6_] SP[8] ) Proposed Original

HF Training

From top to down: super-resolution at 2x and 4x. State-of-the-art methods i ' urve based
interpolation (ICBI), kernel regression based method (KR), compressi Ing based sparse

representation method (SR). [An and Bhanu 2012] o8



Automatic Object Recognition

Object ELM Based AdaBoost Joint Boosting Scale-Invariant
Categories Based Learning

Bikes 94.6 93.4 92.5 73.9

Planes 95.3 90.0 90.2 92.7

Cars 99.0 96.0 90.3 97.0

Leaves 98.3 94.2 - 97.8

Faces 97.9 98.0 96.4 -

[Minhas, et al 2010]

Sample images from CalTech database
29



Real Operation of Wind Farms
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Electricity Price Forecasting

MCP (AUD/MWh)

Error (%)

be predicted at the same time for the coming trading day. [Chen, et al, 20
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Remote Control of a Robotic Hand

* An eight wrist motions offline
classification using linear
support vector machines with
little training time (under 10
minutes).

* This study shows human could
control the remote side robot
hand in real-time using his or
her sEMG signals with less than
50 seconds recorded training
data with ELM.[Lee, et al 2011]
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Human Action Recognition

Weizmann dataset
Methods 0OS-ELM Based 2] [32] [14] [36] [41] [30] [11]
Frames 1/1 33 6/6 1010 - - - - - - -
Accuracy 100.0 100.0 100.0 100.0 100.0 72.8 98.8 100.0 97.8 00.44 100.0
KTH dataset
Methods OS-ELM Based [14] |36] [30] [21] [27] [9] |44]
Frames 1/1 3/3 6/6 1010 - - - - - - -
Accuracy 92.8 93.5 957 96.1 91.7 92.7 94.83 o5.77 97.0 96.7 95.7

[Minhas, et al 2012]

Input Video Track Window
put Vi rack Win - W B Training
l PHOG .-'-.bTesljng
Features
e bend
jack
g jump
g un
g | side
g m walk
wavel
= wave2
2 pjump
-
g

Tracked Object of Interest Configurable Blocks Incremental Learning Recognized Action



3D Shape Segmentation and Labelling
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Constraints of BP and SVM Theory

* Both PDP Group and V. Vapnik have made great
contributions in neural networks R&D

- Without PDP Group’s work on BP in 1986, neural networks might
not have revived in 1980’s.

- Without Vapnik’s work on SVM in 1995, neural networks might
have disappeared although many SVM researchers do not
consider SVM a kind of solutions to the traditional neural
networks.

- Without SVM, many applications in pattern recognition, HCI,
BCI, computational intelligence and machine learning, etc, may
not have appeared and been so successful.

* However, ...

35



Constraints of BP and SVM Theory

* However, both BP and SVM over-emphasize some
aspects of learning and overlook the other aspects, and
thus, both become incomplete in theory:

- BP gives preference on training but does not consider the stability
of the system (consistency of minimum norm of weights in neural
networks, linear system, and matrix theory)

- SVM confines the research in the maximum margin concept
which limits the research in binary classification and does not
have direct and efficient solutions to regression and multi-class
applications. The consistency between maximum margin,
minimum norm of weights in neural networks and matrix theory
has been overlooked.

36



Essential Considerations of ELM

Accuracy

Least User |
Intervention |

Real-Time
Learning
(in seconds,

\ milliseconds, even
microseconds)
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ELM for Threshold Networks

* Binary / Threshold node:

1,x>=0
9 =10 x <0

* Threshold networks (in fact approximated by sigmoid
networks in literature) were usually trained by BP and its
variants indirectly in the past three decades. There was no
direct learning solution to threshold networks in the past 60
years.

* Threshold unit can be approximated by sigmoid unit g(x) =
1/(1 + exp(—4x)) with sufficiently large gain paramete

e With ELM, threshold networks can be traine

38



ELM for Threshold Networks
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ELM for Complex Networks

e (Circular functions:
eiz_e—iz _ eiz_e—iz

i(eiz+e~iz)

- tan(z) =

e Inverse circular functions:

: z dt
arcsin(z) = [, D2’

d
- arctan(z) = [ ‘

Z dt
0 Tagz arccos(z) = |

0 (1—t2)1/2

* Hyperbolic functions:

Z —Z

e—Z

eZ— e
eZ+e~Z’

—e
2

- tanh(z) = sinh(z) =

* Inverse hyperbolic functions:

arcsinh(z) = [ i

z dt
- arctanh(z) = | 0 T

0 1-t2’

40



ELM for Complex Networks

* Wireless Communication Channel Equalizer

— Channel model with nonlinear distortion for 4-QAM signals.
z, = 0, + 0.102 + 0.0503 + v,,, v,,~N(0,0.01)
0o, = (0.34 —i0.27)s,, + (0.87 +i0.43)s,,_; + (0.34 — i0.21)s,,_>

eZ_e—Z

eZ+e—7Z

where

Complex activation function used in ELM: tanh(z) =
z=a-Z+b>b

41



ELM for Complex Networks

* Wireless Communication Channel Equalizer

Imaginary

Imaginary

(c)

— Channel model with nonlinear distortion for 4-QAM signals.

Real (CMRAN equalizer output)

Imaginary

()

Imaginary

(d)

-1 8 ﬁ %
D.Z #‘$ ‘jh :
L e

11- * ”’. *

-1 o 1

4 0 1'

Real (CRBF equalizer output)

Eye diagram of the outputs of different
equalizers (a) C-ELM (ELM with
complex hidden nodes), (b) CBP
(Complex valued BP), (c) CMRAN
(Complex valued MRAN), (d) CRBF
(Complex valued RBF).
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ELM for Complex Networks

* Save Energy in Wireless Communication

—{]5 I | ) I 1 L] I I 1
—— C-ELM
1t —&- CMRAN i
—+— CRBF
—— CBP
. SER
. 1.5 T 0.0 a
= g \h—h E
E 00001
E 2T ] 0.00001 f :
O
ul: 16 20 24 8 SF?I?H
o -25F -
% SER versus SNR: (a) Linear DFE. (b)
= 3t A Volterra DFE. (c) Bilinear DFE. (d)
o represents average ESN (Echo State
Network) performance with randomly
35k - generated reservoirs. (e) indicates
performance of best network chosen
from the networks averaged in (d).
4F | : , : | , ; | ; . From H. Jaeger and H. Haas, Scien

SNR (dB)

Compared with ESN, ELM reduces the error rate by 1000 times or

above. 43
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Optimization Constraints of ELM and
LS-SVM

 ELM: Based on Equality Constraint Conditions pmuang, eta1 2012,
- ELM optimization formula:
« e . 1 1
Minimize: Lp,,, = E IBII? + CEZ{-\LlIIEiIIZ
subject to: h(x;)B =t} + &!,Vi
— The corresponding dual optimization problem:

. 1 1
Minimize: Lp_,,, = > IBII? + CEZIivzlllfiIIZ — ’ivzlz}?il(h(xi)ﬁ —t] +
&)

subject to: = HTa, @; = C&;, h(x;))B—t] + & = 0,Vi
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Optimization Constraints of ELM and
LS-SVM

* LS-SVM: Based on Equality Constraint Conditions (suykens and

Vandewalle 1999]

- LS-SVM optimization formula:
e e e 1 1N 2
Minimize: Lp, ¢ =5 IWllI* + C 231 &

subject to: t;(w- ¢p(x;) +b) =1-¢; ,Vi
. L. . In LS-SVM optimal «; are found
- The corresponding dual optimization problem:  from one hyper plane

YL ait; =0
o 1 1
Minimize: Lp, . .\, = 5 |lw||? + CEZ{-\Ll EF—YN . ai(ti(W - p(x;) +b) —

1+¢& )

subject to:

N
w:z aitiqb(xi),ai = Cfl,tl(wqb(xl)+b)—1+€l
i=1

N
Z aiti =0
=1
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Optimization Constraints of ELM and
SVM

 ELM: Based on Inequality Constraint Conditions muang, et
2010]

- ELM optimization formula:
Minimize: Lp, - > IBII? + C T, &
subject to: t;h(x;))p=1—-¢; ,Vi
£ > 0,Vi
— The corresponding dual optimization problem:
Minimize: Lp,,, = % LYYt h(x) - h(x;) — XL,

subject to: 0 < a; < C, Vi
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Optimization Constraints of ELM and
SVM

* SVM: Based on Inequality Constraint Conditions (cortes and
Vapnik 1995]

- SVM optimization formula: " i 7
. 1 © | ,
Minimize: Lpg,,,= > Iwl|? + CYN ¢ .
: ) 4 //
subject to: t;(w- ¢p(x;) +b) =1 -¢; ,Vi /9,/_, "" : "
£ >0,Vi c &

In SVM optimal «; are found from

. .. . one hyper plane Y a;t; = 0
— The corresponding dual optimization problem: s

Minimize: LDSVM = IiV:1 Z?’zl titjaiaj (p(Xl’) . ¢(X]) — ZIiV:1 a;
subject to: 0 < a; < C, Vi

Z]ivzl altl — O -
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Optimization Constraints of ELM and
SVM

ELM’s inequality constraint variant [Huang, et al 2010] SVM

ELM (based on inequality constraint conditions) and SVM have the same dual optimization
objective functions, but in ELM optimal «; are found from the entire cube [0, C]N while in SVM

optimal a; are found from one hyperplane YV, a;t; = 0 within the cube [0,C]Y. SVM a
provides a suboptimal solution, so does LS-SVM.
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SVM’s Suboptimal Solutions

e Reasons

- SVM’s historical role 1s irreplaceable! Without SVM and Vapnik,
computational intelligence may not be so successful and the history of
computational intelligence would be re-written! However ...

- SVM always searches for the optimal solution in the hyperplane
1l_v=1 a;t; = 0 within the cube [0, C]" of the SVM feature space.

- SVMs may apply similar application-oriented constraints to
irrelevant applications and search similar hyper planes in feature
space if their target labels are similar. Irrelevant applications may
become relevant in SVM solutions.

[Huang, et al 2010]
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SVM’s Suboptimal Solutions

e Reasons

- SVM s too “generous” on the feature mappings and kernels,
almost condition free except for Mercer’s conditions.

1) As the feature mappings and kernels need not satisfy universal
approximation condition, b must be present.

2) As b exists, contradictions are caused.

3) LS-SVM inherits such “generosity” from the conventional SVM
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SVM’s Suboptimal Solutions

\\
Origin of ow-¢Xx)+b=-1 Origin of % Bh(x)=-1
SVM feature space ¢ ELM feature space h

As SVM was originally proposed for classification, universal approximation capability was not
considered at the first place. Actually the feature mappings ¢ (x) are unknown and may not

satisfy universal approximation condition, b must be present to absorb the system error. ELM
was originally proposed for regression, the feature mappings h(x) are known and univers
approximation capability was considered at the first place. In ELM the system err
zero and b should not be present.
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SVM’s Suboptimal Solutions

* Maximum margin?

- Maximum margin is good to binary classification cases. However,
if only considering maximum margin, one may not be able to
imagine “maximum margin” in multi-class / regression
problems.

- To over-emphasize “maximum margin” makes the SVM research
deadlock in binary classification and difficult to find the direct
solution to multi-class applications

- “Maximum margin” is just a special case of ridge regression
theory, linear system stability, and neural network generalization
performance theory in binary applications.

* ELM integrates the ridge regression theory, linear system stability,
and neural network generalization performance theory for
regression and multiclass applications, “maximum m
special case in ELM’s binary applications.
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SVM’s Suboptimal Solutions

e Data distortion in multi-class classifications?

- Different from ELM, SVM and LS-SVM do not have direct
solutions to multi-class applications. Usually SVM and LS-SVM
use One-Against-One (OAO) or One-Against-All (OAA) methods
to handle multi-class applications indirectly, which may distort
applications.

G.-B. Huang, et al., “Extreme learning machine for regression and multiclass classification”, IEEE Transactions on Syste
and Cybernetics - Part B, vol. 42, no. 2, pp. 513-529, 2012.

G.-B. Huang, “An Insight into Extreme Learning Machines: Random Neurons, Random Features and K
Computation, 2014.
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ELM and SVM

(a) SVM

ELM

S
[e] g

9059006290 S o O 2 P (p(x)

05200%00,0 > e & @ % ) .

069209900 @[ | ' g IROCIR > ®

©69900905° 2® R e R S

0090490 <R < X .
20020590 W W G Binary Output
020000
0000
%o
o
d Input Nodes

d Input Nodes ace m Output Nodes
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Relationship and Difference Between
ELM and SVM/LS-SVM

Properties

Belief

Biological inspired

Network output functions

Multiclass classification

Explicit feature mappings
Hidden node types
{mathematical model)
Hidden node types
(biological neurons)

Domain

SLFNs

Layer wise
feature representation

Connectivity

Hyperplane constraints
in dual problem

Universal approximation

and classification capability

Ridge regression theory

Learning capability

Solutions

ELMs

Unlike conventional learning

theories and common understanding,
ELM belief: Learning can be made
without tuning hidden neurons in wide
type of biological learning mechanisms
and wide types of neural networks

Yes
(Confirmed in rats® olfactory system
/ visual system)
(A A A
fr(x) =30, B:iGlay, b, x)

Direct solutions

Yes

(Wide types of explicit feature mappings
h(x). Kemels can also be used.)

Wide types (sigmoid, kernel,

Fourier series, etc)

Yes

Both real and complex domains

“Generalized” SLFN
Wide types of SLFNs

Yes

For both fully connected and
randomly (partially) connected network
No

(It has no such hyperplane constraints
due to lack of bias & in output nodes.)
Proved theoretically for wide types

of nonlinear piecewise nodes / neurons
Yes

(Consistent for feature learning,
clustering, regression and

binary / multiclass classification.)
Efficient in feature learning
(auto-encoders) and clustering
Closed-form and non-closed-form,

SVM
No such belief

{Original assumption [15]: If there is
no learning solution for feedforward
networks, one only needs to consider
the output of the last hidden layer:
B(x))

No

e
f) =3 astsd(x) - (xs) +5
Indirect solutions based on

binary (¢; = 0 or 1) case
No
(Unknown mapping ¢(x), kernel only.)

Kernels

No

Real domain
(Difficult in handling complex
domain directly)

No

No
(Feature representations in
different layers are ignored)

No attention on network connections

Yes
(It has such hyperplane constraints
due to bias & in output nodes.)

No theoretical proof

No

(Maximal margin concept is a
specific case of ridge regression
theory used in binary classification.)

Difficult in handling auto-encoders

Non-closed-form

online, sequential and incremental

LS-SVM
No such belief

{Original assumption [15]: If there is
no learning solution for feedforward
networks, one only needs to consider
the output of the last hidden layer:
B(x))

No

-
f) =30 astsd(x)  $(xs) + 8
Indirect solutions based on

binary (z; = 0 or 1) case
No
{Unknown mapping &(x), kernel only.)

Kemels

No

Real domain
(Difficult in handling complex
domain directly)

No

No
(Feature representations in
different layers are ignored)

No attention on network connections

Yes
(It also provides the model without & but
it does still assume binary class. [45])

No theoretical proof

No

(Maximal margin concept is a
specific case of ridge regression
theory used in binary classification.)

Difficult in handling auto-encoders

Closed-form

g e .
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ELM vs QuickNet / RVFL

Enhanced Patterns

(specific ELM feature mapping
such as sigmoid nodes and
RBF nodes)

QuickNet (1989, not patented) / RVFL (1994, patented) ELM (not patented)

L L
fix) = Z BiGsigrer + €+ X fix) = Z piG(a;, b;,x)
i=1 i=1

Mainly on sigmoid and RBF nodes, not applicable to kernels learning Proved on general cases: any piecewise continuous nodes. ELM theories
extended to biological neurons whose mathematical formula is even unknown

Not feasible for multi-layer of RVFL, losing learning in auto-encoder and Efficient for multi-layer of ELM, auto-encoder, and feature learning, PCA and
feature learning. RVFL and PCA /Random project are different random projects are specific cases of ELM when linear neurons are used.

If ELM’s optimization is used in QuickNet (1988) / RVFL and Schimidt Regularization of output weights, ridge regression theories, neural networks
(1992), a suboptimal solution tends to be achieved. generalization performance theories (maximal margin in binary class cases),

SVM and LS-SVM provide suboptimal solutions.
Hidden layer Output matrix: [HELM for Sig or RBF, X Nx d] Hidden layer Output matrix: HeLM for almost any nonlinear piecewise neurons

Homogenous architectures for compression, feature learning, clustering,
regression and classification
s e i

1

1



Relationship and Difference Between
ELM and QuickNet/RVFL, Duin’s Work

Properties

Belief

Network output functions
SLFNs

Multi layers networks
Connectivity

Hidden node types
{mathematical model)
Hidden node types
{(biological neurons)
Domain

Hidden layer output matrix

Universal approximation
and classification capability

Structural risk minimization

Learning capability
Solutions

Portability

G.-B. Huang, “What are Extreme Learning Machines? Filling the Gap between Frank Rose
Neumann’s Puzzle”, Cognitive Computation, vol. 7, pp. 263-278, 2015.

ELMs
Unlike conventional learning
theories and common understanding,
ELM belief: Learning can be made
without tuning hidden neurons in wide
type of biological leaming mechanisms
and wide types of neural networks
Fr(x) =2l BiGlas, by, x)
“Generalized” SLFN in which a
hidden node can be a subnetwork
Yes
For both fully connected

and randomly (partially) connected network
Wide types (sigmoid, kernel,
Fourier series, etc)

Yes

Both real and complex domains
Hepy

Proved for wide types

of random neurons

Minimize: [3]]5° + C[[HG — T|[5?
Efficient in feature learning
{auto-encoders) and clustering
Closed-form and non-closed-form,

Schmidt, ef al. (1992)

No such belief

T
fo(x} =371l Bigsg{ay - x +b:) + &

Standard SLFN only

No

Fully connected
Sigmoid

No

Real domain

Hera for sigmoid basis 13 xm

No theoretical proof
Not considered

Difficult in handling auto-encoders

Closed-form

sequential and incremental

QuickNet / RVFL

No such belief

Ty
fL(X) = Erj:i Bigsiger kEF + @ X

Standard SLFN only

No

Fully connected
Sigmoid and RBF

No

Real domain

Theoretical proof for semi-random
sigmoid or RBF nodes

Not considered

Lose learning capability

in auto-encoders

Closed-form and non-closed-form

for QuickNet, Closed-form for RVFL

Many {(but not all) ELM variants can be linearly extended to Schmidt, et @i (1992) and RVFL/QuickNet instead of vice

versd, the resultant algorithms are referred to as “ELMs+8" for Schmidt, et af. (1992) and “ELM+ax” for QuickNet/RVFL
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NANYANG

TECHNOLOGICAL

UNIVERSITY

Part 11

Hierarchical ELM

- Layer-wise learning
- but learning without iteratively tuning hidden neurons
- output weights analytically calculated by closed-forms solutions in many
applications




Multi-Layer ELM

d Input Nodes .~ Hidden Nodes m Output Nodes

ELM Feature Mapping ELM Learning
/ ELM Feature Space

&°

Different from Deep Learning, All the hidden neurons in ELM as
a whole are not required to be iteratively tuned

d Input Nodes ELM Feature Space
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ELM as Auto-Encoder (ELM-AE)

Q= mMmTFOHO ~ o

Q=mmMm>FN VO ™o o

O=MmM>FrTFud e

QMM >TFND NN

Q=" mMmITFraS o o
Q=M >BS ™o o
Q="M S N o o
Q=~mmm>rI ™~ owm o
Q=M >0nS ot
Q= >d b o
Q=NMMmTFHIS NNN o
OQ=~~dmMm>rva ™o
O~—mmMm>rB9 N o
QS MmTiNDS ™o
QO ~Mm>Fnd o ™S
QO =MD I o
QO~tmarvne N o~

ELM orthogonal
random feature mapping

(ar,br)

Input Nodes

Features represented by the output weights of
ELM-AE of MNIST OCR Datasets (with 60000
training samples and 10000 testing samples)

L: Equal Dimension Representation

d > L: Compressed Representation

d
d < L: Sparse Representation
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ELM as Auto-Encoder (ELM-AE)

Q—mm>Fruvnd
Q=-~mm>Frnwva
O mMm>rTrne
Q=—tmMm>rTrne
Q=" m>ra>nS
O=mMmm>ne
Q=~tmMmma>na
QOQ=~nmma>rnd
Q=mnm>nd
Q=M >rne
Q=nNnm>na
Q=~=dm>rna
Q~—mMma>rnD
OQO—S~ScdMmMmFTNDS I~ o
QO~Mm>IND 8 ™S o
QO =~"mMm>rnvd I nx o
QO ~—~MmMmarvnd N o~

(b) SVD

AE and (b) rank 20

SVD basis shows the feature representation of each number (0-9) in the MNIST dataset.

AE vs. singular value decomposition. (a) The output weights g of ELM

ELM-
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ELM as Auto-Encoder (ELM-AE)

Orthogonal random Orthogonal random
hidden nodes hidden nodes

ELM-AE based multi-Layer ELM (ML-ELM): Different from Deep Learning, no iteration is
required in tuning the entire multi-layer feedforward networks
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ELM vs Deep Learning

Learning Methods Testing

Accuracy
H-ELM [Chenwei Deng, et al, 2015] 99.14

Multi-Layer ELM (784-700- 99.03+0.04
700-15000-10) [Huang, et al 2013]

Deep Belief Networks (DBN) 98.87
(748-500-500-2000-10)

Deep Boltzmann Machines 99.05
(DBM) (784-500-1000-10)

Stacked Auto Encoders (SAE) 98.6

Stacked Denoising Auto 98.72
Encoders (SDAE)

[Huang, et al 2013]

no. 6, pp. 31-34, 2013.

J. Tang, et al, “Extreme Learning Machine for Multilayer Perceptron,” (in press) IEEE Tr

Learning Systems, 2015.

Training Time

281.37s
444.7s

20580s
(5.7 hours)

68246s
(19 hours)

> 17 hours

> 17 hours

80000 -+
70000 -
60000 -
50000 -
40000 -

30000 -

20000

10000

B

ELM DBN
Training time (s)

Significant training time gap

DBM




Human Action Recognition

Class i:
Flat/Leftward

Class z:
Flat/Rightward

Class 3:
Flat/Contract

Class 4
Spread/Leftward

Class 5:
Spread Rightward

Class 6:
Spread/Contract

Class =
V-shape Teftward

Class B:
V-shape Bightward

Class g:
V-shape/Contract

Methods

Accuracies

ELM Tensor canonical Tangent bundles on
Based correlation special manifolds

99.4 85 93.4

[Deng, et al 2015]

Conventional: Heterogeneous combinations

Feature -
—>| extraction (PCA, > Class'gfé)(SVM' —
etc)

Conventional: Homogeneous combinations

Feature Learning
by ELM Auto-
Encoder

> ELM as
Classifier

— —>




Target Tracking

Feature Extraction

Frame (n) Sampling

Online Sequential Updating

(Multilayer Encoding)
~\
0 0
02880988
(o) 0o 00po 0O o Updating OS-ELLM
o lo) 00 lo) o)
069 0g5°
o o )
Frame (n+1) Auto-adaptive Detection System Tracking Result
Circle Feature Dector Classication

Sampling (ELM autoencoder) (OS-ELM)

J. Xiong, et al, “Extreme Learning Machine for Multilayer Perceptron”, IEEE Transactions o

Systems, 2015. 66



Target Tracking

Oy,

ELM

Compressive Tracking (CT)

Stacked Autoencoder (SDA)

ELM

Compressive Tracking (CT)

Stacked Autoencoder (SDA)

v 1 | B3 et ' o 1 = R (3T 1 ; E ._ . '_- , : ]
J. Xiong, et al, “Extreme Learning Machine for Multilayer Perceptron”, IEEE Transactions o Networks and Learning
Systems, 2015. 67



Target Tracking

Rﬂ T T T T T T T znn T T T T T T T
—&— H-ELM 180

T —a— T .
—=—5DA 1600

=
(=]
T
1

wn

=
;
=

Tracking location error (in pixel)
&
Tracking location error {in pixel)

]
20
40}
10 70
u = — i U '.'! £
S0 100 150 200 250 300 350 A0 1001 | 50 200 250 300 350 400
Frame Frame
(a) (b)

Comparison of tracking location error using H-ELM, CT, and SDA on different data sets. (a) David Indoor. (b) Trellis




Car Detection

Methods Contour based
learning
Accuracies 95.5 92.8 93.3
Time 46.78 s 3262.30 s
[Deng, et al 2014]

| i o Detected Result

Network Input Hidden Units Output
o o
. 2000 (o] (0] (0]
[e) [e)
o
[e]
!

Image Preparation Detection Network

Sliding Sampling

J. Xiong, et al, “Extreme Learning Machine for Multilayer Perceptron”, IEEE Transactions o

Systems, 2015. 69



ELM vs Deep Learning

Learning Methods Testing Accuracy Training Time
ELM-AE 86.45 602s
3D ShapeNets (Convolutional Deep Belief Network) 86.5 Two days

[Kai XU, Zhige XIE, NUDT, personal communication 2014]

Depth map from - 3D ShapeNets
the back of a sofa

L 4
> * ] i} 84  Ahal
sofa? Next-Best-Viey g It is a sofa!

*ﬁ' - - 2 - T~
- i - i |

Not sure. [ :

Look from e

another view? Where to lock next? New depth map

Princeton/MIT/CUHK'’s 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction
[Wu, et al 2014]
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ELM Theory on Local Receptive Fields
and Super Nodes

d Input Nodes .~ Hidden Nodes m Output Nodes

ELM Feature Mapping ELM Learning
/ ELM Feature Space (minimal norm of output weights)
(without tuning hidden nodes)

Ca-
[e) o]
0'\00"'1 k

’Random hidden node
(random hidden parameters)




ELM Theory on Local Receptive Fields
and Super Nodes

Local Receptive Field

Pooling

Random Input
Weights Vector

Ay

RO R ROR R R R
RO

Input Layer Feature Map k Pooling Map k
020
o - - -
oggggo RN Convolutional nodes and pooling are one of local
o - - -
929999 ° receptive fields in ELM, but there may have many
z : more.
oggogooo [ -1 Lo - : :
200206° v T=m T Similar to sigmoid nodes in feedforward networks,
(o] \ ! - -
gggo ! / RBF nodes in RBF networks, etc, convolutional
o \ ! . -
° 020 nodes in CNN can be considered one type of
038333 nonlinear piecewise hidden nodes used in ELM
oo Oo o] \ 1
%o OQOOO Y
Op 05-%0
°oo°On:90-Q% ‘\
R
i @
905%0000 i )
206900° (Super) Hidden Node i
0080
%o
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ELM Theory on Local Receptive
Fields and Super Nodes

* Learned from Jiirgen Schmidhuber and Dong Yu in
INNS BigData, San Francisoc, August 10-12, 2015, and
Deep Learning in wiki

— First Deep NINS: vakhnenko, etal, 1965
— Basic CNN: Fukushima 1979
- Back propagation applied to CNNS: LeCun, etal, 1989
* Mainly on MNIST OCR, but need to spend 3 days
- Max-Pooling: weng 1992

* ELM learning algorithms can also be applied to CNN so

that tuning hidden neurons are not required, and

meanwhile ELM naturally provides theoretical su
to and underpin CNN and Max-Pooling. .

, pp. 3056-3062, 2007.
| Intelligence Magazine, vol. 73

- 2015]

G.-B. Huang and L. Chen, “Convex Incremental Extreme Learning Machine,” Neurocomputing,
G.-B. Huang, et al, “Local Receptive Fields Based Extreme Learning Machine,” IEEE Co
10, no. 2, pp. 18-29, 2015.



ELM vs Deep Learning

Learning Methods Testing

Accuracy
ELM 97.3%

Tiled Convolutional Neural Nets 96.1%

Convolutional Neural Nets 94.4%
3D DBNs 93.5%
DEMs 92.8% NORB Dataset
NORB Data
DBN ELM
13 h 0.1h

G.-B. Huang, et al, “Local Receptive Fields Based Extreme Learning Machine,” IEEE Compu ce Magazine,

vol. 10, no. 2, pp. 18-29, 2015. 74



ELM vs Deep Learning

Learning Methods Testing
Error Rate

ELM 0.02%

Convolutional Neural Nets 28.51%

(CNN)

CNN-+video (test images of 7.75%

COIL)

CNN++video (COIL-like 20.23%

images)
Raw Input layer Feature layer Pooling layer Output layer
image (RGB maps) (K maps) (K maps) (m nodes)

Local Receptive
Field of Various

Types L

Tuning-free
Nodes

Z. Bai, et al, “Generic Object Recognition with Local Receptive Fields Based Extreme Learni

Least-squares
Solution /7

Conference on Big Data, San Francisco, August 8-10, 2015.

COIL Dataset: 1800 training samples, 5400

testing samples, 100 categories
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ELM Slices

l

Wi,

d Input Nodes
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ELM Feature Mapping

%o
0g%0
Ooooo
0990520
06200090 Q &P
0o .© o 4
9909950200 &
0000008000 e 0(\, "\\_e
905206290 NI P
05206200,.0 A0 &
00,%045°0 > QO
06-90,%0 O &
05%0,%0 ®~<§
020000 >
0090°
000
oo
d Input Nodes

i
|

ELM Feature

:
|

&°

S
o
&
=~

l

e,

i
|

®
%

L

ELM Feature ~ m Output Nodes

.’,

ELM Learning

<

O
N
S

%,

:
|

2

2y

%

@
%, o,

ELM Feature



Speech Emotion Recognition (DNN +
ELM)

- I
Bl OpenEAR

[_JDNN-SVM
EEDONN-ELM |
B ONN-KE LM

DT eremmmimmiiiiann, e EELLL T TR PP PP

Weighted accuracy Unweighted accuracy

Microsoft Research and Ohio State University [Han, et al 2014]
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Traffic Sign Recognition (DNN + ELM)

Methods CNN + ELM Based MCDNN
Accuracies 99.48% 99.46%
Training time 5 hours (regular PC) 37 hours (GPU

Implementation)

(ELM may just spend several minutes on training in order to reach 98+% accuracy) [Xu, et al
2015]

Recognition Accuracy [%] Priot § Play Traffic Sig
TEI |:| FETIE nE

CNN-ELM(Lab) 18 5 Piizk
CNN-ELM 5 - w - I:iﬁ
CNN-SVM(Lab) I ! ! E
CNN-SVM .
Plain CNN ! o R (WAY
BW-ELM 20 T N |
Random Forests B '
Multi-scale CNN B Abert pr——
e QS EDPRIO
NNaug/ v EZANS LK }
= i /
MCDNN L6 p————
= FUSSP | T /
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ELM, SVM and Deep Learning

(a) SVM

) d Input Nodes

(b) Deep Learning

) d Input Nodes

\

$(\ &(\ S
\{S\O \Q’%\ \{S\O ‘eo_,\ - \\/\/% @ (p (x)
o> — | Ko W@ o8
<@ R <C R &
@ @ Q@’bQ
Unknown featurYes in each layer |
--------------------- ——— e L

—> 0 —>

—> 0 —>

»
»

Binary Output

m Output Nodes
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ELM, SVM and Deep Learning

(a) ELM

d Input Nodes ELM Feature Space ELM Feature Space m Output Nodes

Different from Deep Learning, All the hidden neurons in ELM as
a whole are not required to be iteratively tuned

(b) ELM subnetwork

“ﬂl ‘rﬂi ﬁL“ Feature learning
................................................................................................ Clustering
----- Problem based Regression

&

................................................................................... »Classrncatlon

Hidden nodes need not be tuned. A hidden node
can be a subnetwork of several nodes.




ELM and Deep Learning

Deep Learning ELMs

Very sensitive to network size, “painful”
manually tuning

Difficult in parallel and hardware implementation
Lack of theoretical proof

Different models for feature learning, clustering,
and classifications

Impossible for micro level real-time learning and
control; huge training time is required; difficult
for multi-channel data fusion and decision
synchronization

Difficult for online incremental learning and
prediction (stream data learning)

Only reaching higher accuracy when data is large
enough

Impossible to have hardware designed for
universal development

Huge computing resources required (GPU
required, up to tens of thousands of cores
required)

Stable in a wide range of network size, almost free
of human intervention

Easy in parallel and hardware implementation
Rigorously proved in theory

Homogenous models for compression, feature
learning, clustering, regression and classification

Easy for micro level real-time learning and control,
up to thousands times faster, efficient for multi-
channel data fusion and potential for decision
synchronization

Easy for online incremental learning and prediction
(streaming data learning)

Reaching higher accuracy in full spectrum of
applications, from sparse/small data to large size
of applications

“Brains (devised by ELM)” can be generated before
applications are present

Usually implemented in regular PCs / Laptops /
FPGA / Chip; The training time would

significantly be reduced if multi cores are used.
_ -~ v



ELM as Fundamentals of Cognition and
Reasoning

Compression

Feature
Learning

Regression

Classification

82



ELM Filling Gaps ...

Baum

1988
Rosenblatt ( ) RVFL

Perceptron (1994)
(1958)

Schmidt, QuickNet

(f; ;‘;) (1989)

Neural network methods

Biological
learning

Feature space methods

PCA
(1901)

Random
Projection
(1998)
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ELM Filling Gaps ...

Before ELM theory, for these methods:

1) Universal approximation capability was not
proved for full random hidden nodes case

2) Separation capability was not proved.

3) Optimization constraints were not used.

4) Dimensionality of hidden maps is usually
lower than number of training data

Rosenblatt
Perceptron
(1958)

Baum
(1988)

QuickNet Schmidt, et al RVFL
(1989) (1994)

2) Classification
3) Clustering
4) Feature learning

L+ o+
x I B )
o\ 3 EE% ® ELM aims to address the open problems:
S =3 g 2 % 1) Can learning be made without iteratively
3 HERS tuning hidden neurorjs even when the shapes
® o N and modeling of hidden neuron output
(g. 3153 functions are unknowyn?
> o 22 o 2) Does there exist unifled frameworks for
ELMis efficient in: % @ g3 g 2 feedforward neural networks and feature
1) Regression 5.2 =] g space methods?
3c ]
a 3 n
m —
n 5
[¢]

1) Extend to almost any nonlinear piecewise continuous agtivation functions (even
unknown shapes and modeling including biological neusons)

2) Extend to kernels and high dimensionality of hidden mappings cases

3) Prove the universal approximation and separation capability of “generalized " SLFNs.

4) Build the link among ridge regression, system stability, fleural network generation

theory, maximal margin, and optimization constraints og network parameters in ELM

framework

Prove-that-hidden-node-parameters-can-be-independent of training data

Prove that random hidden neurons are linearly independent

Use generalization theory for learning optimization

Random neurons (even with
Biological unknown shapes / modeling)

learning Kernels _
Optlmlzatlon constraints

ELMs

o2 Use standard SLFNs instead of RVFL and QuickNet

0{\00 $ x Remove bias in the output nodes, which are contradictory to biological systems
.on ineaf ol o
- gunct RN a *r
Lyation N g ando,
actV 2C D L )
el - 6@\- 3 S5 atUreS

.. ..—-—"_-

.—--'_—-—‘

Before ELM theory, for thesgfes
methods:
PSVM 1) Universakapproxis@Hon capability may
(2001) notAauesheen proved.

Aationship-with neural networks is not
very cleaf.

P~

TE SPACE __

Random

Ly Projection

(1901) (1999)

(1998)
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ELM Filling Gaps ...

. PCA, random projection, SVM,
QuickNet, RVFL, Schmidt et al. 1992
are considered isolated before ELM

*  ELMs provide unifying network
architectures with neither bias in the
output nodes nor direct links
between the input and output layers

*  Ahidden node in ELM can be a
network

* ELMis a generalized SLFN or multi
layers of networks

*  Random hidden nodes / neurons
independent of training samples

*  Kernels can also be used

*  Hidden neurons can be inherited
from their ancestors or other
systems and thus, tuning is not
required

*  Wide types of hidden nodes /
neurons (in real and complex
domains, with known and unknown
shapes)

*  Universal approximation and
classification capabilities proved in
theory

Generalized Structure risk
SLFNs and minimization
Multi hidden and ridge
layers of regression
networks theories

Kernels /

Random

hidden nodes

/ Neurons Homogeneous
inherited from learning
ancestors algorithms

Neural network generalization
performance theory, stricture risk
minimization and ridge regression
become consistent in ELM

Ridge regression theories applied in
feature learning, clustering,
regression, binary and multi-class
applications

Same network architectures for
compression, feature learning,
clustering, regression and
classification

Similar learning algorithms for
different learning tasks

Scalable for hierarchical blocks of
ELMs




Towards Biological Learning, Cognition

and Reasoning?
Biological Learning ELMs

Stable in a wide range (tens to thousands of neurons  Stable in a wide range (tens to thousands of
in each module) neurons in each module)

Parallel implementation Easy in parallel implementation
“Biological” implementation Much easier in hardware implementation
Free of user specified parameters Least human intervention

One module possibly for several types of applications = One network type for different applications

Fast in micro learning point Fast in micro learning point

Nature in online sequential learning Easy in online sequential learning

Fast speed and high accuracy Fast speed and high accuracy

Brains are built before applications “Brains (devised by ELM)” can be generated

before applications are present




Biological Learning vs Computers

* J. von Neumann, Father of Computers’ Puzzles
[Neumann 1951, 1956]

- Why ““an imperfect (biological) neural network,
containing many random connections, can be made to
perform reliably those functions which might be
represented by idealized wiring diagrams” [Rosenblatt 1958]

* 60 Years Later ...
¢ Answered by ELM Learning TheorY[Huang, et al 2006, 2007, 2008]

- “As long as the output functions of hidden neurons are nonlinear
piecewise continuous and even if their shapes and modeling are
unknown, (biological) neural networks with random hidden neurons
attain both universal approximation and classification capab111t1
and the changes in finite number of hidden neurons a
related connections do not affect the overall per
networks.” [Huang 2014]

e of the
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Biological Learning vs Computers

e FILM Learning ThEO].‘Y[Huang, et al 2006, 2007, 2008, 2014, 2015]

ELM can be used to train wide type of multi hidden layer of
teedforward networks:

* Each hidden layer can be trained by one single ELM based on its role as
feature learning, clustering, regression or classification.

* Entire network as a whole can be considered as a single ELM in which
hidden neurons need not be tuned.

ELM slice can be ““inserted” into many local parts of a multi hidden
layer feedforward network, or work together with other learning
architectures / models.

A hidden node in an ELM slice (a ““generalized” SLFN) can be a
network of several nodes, thus local receptive fields can be formed.

In each hidden layer, input layers to hidden nodes ca
partially randomly connected according to dif

probability distribution function. 88



Biological Learning vs Computers

e FILM Learning TheorY[Huang, et al 2006, 2007, 2008, 2014, 2015]

- From ELM theories point of view, the entire multi layers of
networks are structured and ordered, but they may be seemingly
“messy” and Tunstructured” in a particular layer or neuron slice.
“Hard wiring” can be randomly built locally with full connection or
partial connections.

- Co-existence of globally structured architectures and locally random
hidden neurons happen to have fundamental learning capabilities
of compression, feature learning, clustering, regression and
classification.

- Biological learning mechanisms are sophisticated, we believe that
““learning without tuning hidden neurons” is one of fundamental
biological learning mechanisms in many modules of learnin
systems. Furthermore, random hidden neurons and ~ran '
are only two specific implementations of such "
tuning hidden neurons” learning mechapi

without
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Internet of Intelligent Things

Intelligent
Things

(eg. Intelligent engine,
intelligent devices, intelligent
sensors, intelligent cameras,

etc)
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Society of Intelligent Things
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Three Stages of Intelligent Things

Society of
Intelligent
Internet of Things
Intelligent  Internet
; _ o
Internet of Th|ng§ dlsapp.egrlng .
Things « Intelligent * From living
things with thing
ELMs mtellrl]gence to
machine
argtaerrtials intelligence?

smart sensors
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Human Intelligence vs Machine
Intelligence

Human
Intelligence

Machine
Intelligence
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ELM Theory

ntional Approximation Capability Theory

Theorem

Output Node o Any continuous target function f(x) can

be approximated by SLFNs with some
kind of hidden nodes and with
appropriate values for learning
parameters (hidden node parameters
(a;, b;)) and output weights /3;.

e In other words, given any small positive
value e, for sigmoid type or RBF type of
SLFNs, there exist a set of hidden node
parameters (a;, b;) and appropriate
number (L) of hidden nodes such that

L Hidden Nodes

n Input Nodes

() —f)I < e (1)

Figure 1: Feedforward Network Architecture. 4

M. Leshno, et al., “Multilayer feedforward networks with a nonpolynomial activation function can approximate any
function,” Neural Networks, vol. 6, pp. 861-867, 1993.
J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Computation, vol.

3, pp. 246-257, 1991.
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ELM Theory

ELM Learning Theory

Output Node

I Hidden Nodes

n Tnput Nodes

Figure 2: Feedforward Network Architecture: any type of nonlinear
piecewise continuous G(a;, b;, x).

Given a SLFN with any nonconstant piecewise continuous
hidden nodes G(x, a, b), if

span{G(x,a,b) : (a,b) € C? x C} is dense in L?, for any
given positive value e, for any continuous target function f

and any randomly generated sequence { (a,,, h,,)ﬁ:l +
there exists an integer L, > 0 such thatwhen L > L

L
F(x) — > Bugn

n=1

<e (]

<"/1— 1 ~$’H>

holds with probability one if 3, = e
&n

gn = Glan, by, x),i=1,--- ,L

G.-B. Huang, et al., “Universal approximation using incremental constructive feedforward networks with random

hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.

G.-B. Huang, et al., “Convex incremental learning machine,” Neurocomputing, vol. 70, pp. 3056-3062, 2007.
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ELM Theory

ELM Learning Theory

e o Given a SLFN with a type of nonconstant piecewise

S N continuous hidden nodes G(x, a, b), if any continuous
& | i target function f(x) can be approximated by such
P g " % SLFNs with appropriate hidden node parameters, then
3 g : & there is no need to find an algorithm to tune the hidden

node parameters.
g e Instead, given any positive value e, for any continuous
target function f and any randomly generated sequence
[ {(ai, b,),LZI }, there exists an integer L, > 0 such that

! when L > Lo, [[/(x) = S5 Buga|| < € holds with
i
" €n—118
3 probability one if 5, = ""‘,7‘”2'»,;',, = G(an, b, X),
i=llyoo0o My

0 Thus, for basic ELM with the fixed network architecture
and L random hidden nodes,

lim;—, 4 oo |[f(x) — 325, Bigi|| = 0 where the output
weights 3,’s are determined by ordinary least square.

Figure 3: Feedforward Network Architecture: any type of
nonlinear piecewise continuous G(a;, b;, x).
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ELM Theory

ELM Learning Theory

e o Given a SLFN with a type of nonconstant piecewise

S N continuous hidden nodes G(x, a, b), if any continuous
& | i target function f(x) can be approximated by such
P g " % SLFNs with appropriate hidden node parameters, then
3 g : & there is no need to find an algorithm to tune the hidden

node parameters.
g e Instead, given any positive value e, for any continuous
target function f and any randomly generated sequence
[ {(ai, b,),LZI }, there exists an integer L, > 0 such that

! when L > Lo, [[/(x) = S5 Buga|| < € holds with
i
" €n—118
3 probability one if 5, = ""‘,7‘”2'»,;',, = G(an, b, X),
i=llyoo0o My

0 Thus, for basic ELM with the fixed network architecture
and L random hidden nodes,

lim;—, 4 oo |[f(x) — 325, Bigi|| = 0 where the output
weights 3,’s are determined by ordinary least square.

Figure 3: Feedforward Network Architecture: any type of Essence of ELM

nonlinear piecewise continuous G(a;, b;, x).

Hidden node parameters (a;, b,)f‘:, are not only independent of
target functions f(x) but also of training samples.

heories, Incremental/Sequential EL



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and Baum’s Work

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines. Theories, Incremental/Seque!



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and Baum’s Work

0 Baum (1988): (seen from simulations) one may fix the weights of the
connections on one level and simply adjust the connections on the other level
and no (significant) gain is possible by using an algorithm able to adjust the
weights on both levels simultaneously.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines.org ELM Theories, Incremental/Sequential ELM



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and Baum’s Work

0 Baum (1988): (seen from simulations) one may fix the weights of the
connections on one level and simply adjust the connections on the other level
and no (significant) gain is possible by using an algorithm able to adjust the
weights on both levels simultaneously.

e However, Baum did not discuss whether all the hidden node biases »; should be
set with the same value. Baum did not discuss either whether the hidden node
biases b; should be tuned or not. ELM theory states that the hidden node
parameters are independent of the training data, which was not found in Baum
(1988).

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines.org ELM Theories, Incremental/Sequential ELM



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and Baum’s Work

0 Baum (1988): (seen from simulations) one may fix the weights of the
connections on one level and simply adjust the connections on the other level
and no (significant) gain is possible by using an algorithm able to adjust the
weights on both levels simultaneously.

e However, Baum did not discuss whether all the hidden node biases »; should be
set with the same value. Baum did not discuss either whether the hidden node
biases b; should be tuned or not. ELM theory states that the hidden node
parameters are independent of the training data, which was not found in Baum
(1988).

Q Baum (1988) did not study RBF network and kernel learning, while ELM work for
all these cases.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines.org ELM Theories, Incremental/Sequential ELM



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and Baum’s Work

0 Baum (1988): (seen from simulations) one may fix the weights of the
connections on one level and simply adjust the connections on the other level
and no (significant) gain is possible by using an algorithm able to adjust the
weights on both levels simultaneously.

e However, Baum did not discuss whether all the hidden node biases »; should be
set with the same value. Baum did not discuss either whether the hidden node
biases b; should be tuned or not. ELM theory states that the hidden node
parameters are independent of the training data, which was not found in Baum
(1988).

Q Baum (1988) did not study RBF network and kernel learning, while ELM work for
all these cases.

0 Baum (1988) did not give any theoretical analysis, let alone the proof of universal
approximation capability of ELM.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines.org ELM Theories, Incremental/Sequential ELM



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RBF Networks

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines. Theories, Incremental/Seque!



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RBF Networks

0 The conventional RBF network (Lowe 1988,Lowe 1989): focus on a specific RBF
network with the same impact factor » assigned to all the RBF hidden nodes:
fu(x) = > Big(b||x — a;]|), where the centers a; can be randomly selected
from the training data instead of tuning, but the impact factor »; of RBF hidden
nodes is not randomly selected and usually determined by users. One of RBF
networks interested by ELM is f,,(x) = >_" | Big(bi||x — a;||) where the RBF
hidden nodes are not requested to have the same impact factors b;.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines.org ELM Theories, Incremental/Sequential ELM



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RBF Networks

0 The conventional RBF network (Lowe 1988,Lowe 1989): focus on a specific RBF
network with the same impact factor » assigned to all the RBF hidden nodes:
fu(x) = > Big(b||x — a;]|), where the centers a; can be randomly selected
from the training data instead of tuning, but the impact factor »; of RBF hidden
nodes is not randomly selected and usually determined by users. One of RBF
networks interested by ELM is f,,(x) = >_" | Big(bi||x — a;||) where the RBF
hidden nodes are not requested to have the same impact factors b;.

@ RBF networks f,(x) = 37, Big(b||x — a;]|) (studied by Lowe 1988,Lowe 1989)
with randomly generated centers a; and randomly generated same values of
impact factors b in fact does not generally have the universal approximation
capability, in contrast, RBF networks f,,(x) = >, Gig(bil|x — a;||) (in ELM) with
randomly generated centers a; and randomly generated impact factors b; (with
different values) does generally have the universal approximation capability.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.
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ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RBF Networks

0 The conventional RBF network (Lowe 1988,Lowe 1989): focus on a specific RBF
network with the same impact factor » assigned to all the RBF hidden nodes:
fu(x) = > Big(b||x — a;]|), where the centers a; can be randomly selected
from the training data instead of tuning, but the impact factor »; of RBF hidden
nodes is not randomly selected and usually determined by users. One of RBF
networks interested by ELM is f,,(x) = >_" | Big(bi||x — a;||) where the RBF
hidden nodes are not requested to have the same impact factors b;.

@ RBF networks f,(x) = 37, Big(b||x — a;]|) (studied by Lowe 1988,Lowe 1989)
with randomly generated centers a; and randomly generated same values of
impact factors b in fact does not generally have the universal approximation
capability, in contrast, RBF networks f,,(x) = >, Gig(bil|x — a;||) (in ELM) with

randomly generated centers a; and randomly generated impact factors b; (with
different values) does generally have the universal approximation capability.

0 ELM works for different type of hidden nodes including different type of RBF
nodes (not limited to g(b||x — a;||)), additive nodes, kernels, etc while
conventional RBF networks (Lowe1988,Lowe1989) only work for specific type of
RBF networks with single impact factor value for all RBF nodes.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines.org ELM Theories, Incremental/Sequential ELM



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RVFL

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines. Theories, Incremental/Sequet



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RVFL

o In a random vector version of the functional-link (RVFL) model (Igelnik 1995), the
input weights a; are “uniformly” drawn from a probabilistic space
Ve = 10,0 x [—af, aQ]?"! (d: the input dimension). The hidden node biases
b; depend on the weights a; and some other parameters y; and u;:
b; = —(ca; - y; + u;), where y; and «; are randomly generated from [0, 1]¢ and
[—29,29]. « and €2 have to be determined in the learning stage and depends on
the training data distribution.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.

learning-machines.org ELM Theories, Incremental/Sequential ELM



ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RVFL

o In a random vector version of the functional-link (RVFL) model (Igelnik 1995), the
input weights a; are “uniformly” drawn from a probabilistic space
Ve = 10,0 x [—af, aQ]?"! (d: the input dimension). The hidden node biases
b; depend on the weights a; and some other parameters y; and u;:
b; = —(ca; - y; + u;), where y; and «; are randomly generated from [0, 1]¢ and
[—29,29]. « and €2 have to be determined in the learning stage and depends on
the training data distribution.

Q In ELM, the hidden node parameters (a;, b;) are not only independent of the
training data but also of each other.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.
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ELM Theory

Differences Between ELM and Semi-Random Methods

Difference Between ELM and RVFL

o In a random vector version of the functional-link (RVFL) model (Igelnik 1995), the
input weights a; are “uniformly” drawn from a probabilistic space
Ve = 10,0 x [—af, aQ]?"! (d: the input dimension). The hidden node biases
b; depend on the weights a; and some other parameters y; and u;:
b; = —(ca; - y; + u;), where y; and «; are randomly generated from [0, 1]¢ and
[—29,29]. « and €2 have to be determined in the learning stage and depends on
the training data distribution.

Q In ELM, the hidden node parameters (a;, b;) are not only independent of the
training data but also of each other.

© In ELM, a;’s and b;’s are independent of each other.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.
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I-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set X = {(x;, t;)|x; € R",t; € R",i = 1,--- , N}, hidden node output
function G(a, b, x), maximum node number L.« and expected learning accuracy e,

where H;, = [h(1),--- ,h(N)]" is the activation vector of the new node L for all the N
training samples and E = [e(1),--- ,e(N)]T is the residual vector. E - H! ~ (e;—1,81)
and H - HZ: ~ HgL”z.
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I-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set X = {(x;, t;)|x; € R",t; € R",i = 1,--- , N}, hidden node output
function G(a, b, x), maximum node number L.« and expected learning accuracy e,

o Initialization: Let L = 0 and residual error E = ¢, where t = [t;,--- ,tn]".

where H;, = [h(1),--- ,h(N)]" is the activation vector of the new node L for all the N
training samples and E = [e(1),--- ,e(N)]T is the residual vector. E - H! ~ (e;—1,81)
and H; - HZ: ~ HgL”Z.
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I-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set X = {(x;, t;)|x; € R",t; € R",i = 1,--- , N}, hidden node output
function G(a, b, x), maximum node number L.« and expected learning accuracy e,
o Initialization: Let L = 0 and residual error E = ¢, where t = [t;,- - ,ty]".

© Learning step:
while L < Lyax and “EH > €

endwhile
where H;, = [h(1),--- ,h(N)]" is the activation vector of the new node L for all the N
training samples and £ = [e(1),--- ,e(N)]” is the residual vector. E - H! ~ (e;—1,81)

and H; - HZ: ~ HgL”Z.
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I-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set X = {(x;, t;)|x; € R",t; € R",i = 1,--- , N}, hidden node output
function G(a, b, x), maximum node number L.« and expected learning accuracy e,
o Initialization: Let L = 0 and residual error E = ¢, where t = [t;,- - ,ty]".

©@ Learning step:
while L < Lyax and ||E|| > €
- Increase by 1 the number of hidden nodes L: L = L + 1.

endwhile
where H;, = [h(1),--- ,h(N)]" is the activation vector of the new node L for all the N
training samples and E = [e(1),--- ,e(N)] is the residual vector. E - H! ~ (e;—1,81)

and H; - HZ: ~ HgL”Z.
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I-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set X = {(x;, t;)|x; € R",t; € R",i = 1,--- , N}, hidden node output
function G(a, b, x), maximum node number L.« and expected learning accuracy e,
o Initialization: Let L = 0 and residual error E = ¢, where t = [t;,- - ,ty]".

©@ Learning step:
while L < Linax and ||E[| > e

- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (a, by ) for new hidden node L.

endwhile
where H;, = [h(1),--- ,h(N)]" is the activation vector of the new node L for all the N
training samples and £ = [e(1),--- ,e(N)]” is the residual vector. E - H! ~ (e;—1,81)

and H; - HZ: ~ HgL”Z.
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I-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set X = {(x;, t;)|x; € R",t; € R",i = 1,--- , N}, hidden node output
function G(a, b, x), maximum node number L.« and expected learning accuracy e,
o Initialization: Let L = 0 and residual error E = ¢, where t = [t;,- - ,ty]".

©@ Learning step:
while L < Linax and ||E[| > e

- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (a, , b, ) for new hidden node L.

eyl e g
- Calculate the output weight 3;, for the new hidden node: 8, = £ ”LT = M
Hp-Hp lezll
endwhile
where H;, = [h(1),--- ,h(N)]" is the activation vector of the new node L for all the N
training samples and E = [e(1),--- ,e(N)] is the residual vector. E - H! ~ (e;—1,81)

and H; - HZ: ~ HgL”Z.
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I-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set X = {(x;, t;)|x; € R",t; € R",i = 1,--- , N}, hidden node output
function G(a, b, x), maximum node number L.« and expected learning accuracy e,
o Initialization: Let L = 0 and residual error E = ¢, where t = [t;,- - ,ty]".

©@ Learning step:

while L < Liyax and “EH > €

Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (a, , b, ) for new hidden node L.

e T g
- Calculate the output weight 3; for the new hidden node: 3; = h’[ ILLT = %
LHy 8L
- Calculate the residual error after adding the new hidden node L: E = E — 3, - H,
endwhile
where H;, = [h(1),--- ,h(N)]" is the activation vector of the new node L for all the N
training samples and E = [e(1),--- ,e(N)] is the residual vector. E - H! ~ (e;—1,81)

and H; - HT HQL”‘
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I-ELM

Performance of |-ELM with RBF hidden nodes

Testing RMSE

02s

Auto Price
= Boston Housing 09
Delta Elevatars
Machine CPU

08
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05

04

Training time (seconds)

03

02

01

50 100 150 200 250 300
Learning steps (Number of neurans)

Figure 4: Average testing RMSE

Auto Price
Boston Housing
Delta Elevators
Machine CPU

; f A
50 100 150 200 20 300
Learning steps (HMumber of neurons)

Figure 5: Average training time (seconds)

G.-B. Huang, et al., “Universal approximation using incremental constructive feedforward networks with random

hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
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I-ELM

Real-World Regression Problems

Problems I-ELM RAN MRAN
Sigmoid RBF Sin

Abalone 0.0920 | 0.0938 | 0.0886 | 0.1183 | 0.0906

Auto Price 0.0977 | 0.1261 | 0.1162 | 0.1418 | 0.1373

Boston Housing 0.1167 | 0.1320 | 0.1404 | 0.1474 | 0.1321
California Housing 0.1683 | 0.1731 | 0.1550 | 0.1506 | 0.1480
Census (House8L) | 0.0923 | 0.0922 | 0.0842 | 0.1061 | 0.0903

Delta Ailerons 0.0525 | 0.0632 | 0.0635 | 0.1018 | 0.0618

Delta Elevators 0.0740 | 0.0790 | 0.0739 | 0.1322 | 0.0807

Machine CPU 0.0504 | 0.0674 | 0.0665 | 0.1069 | 0.1068

Table 1: Average testing RMSE of different algorithms. (I-ELM with 200 hidden nodes)
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I-ELM

Real-World Regression Problems

Problems I-ELM RAN MRAN
Sigmoid RBF Sin

Abalone 0.0046 | 0.0053 | 0.0049 | 0.0076 | 0.0065

Auto Price 0.0069 | 0.0255 | 0.0179 | 0.0261 | 0.0381

Boston Housing 0.0112 | 0.0126 | 0.0114 | 0.0177 | 0.0140
California Housing 0.0049 | 0.0081 | 0.0052 | 0.0035 | 0.0030
Census (House8L) | 0.0023 | 0.0029 | 0.0015 | 0.0038 | 0.0042

Delta Ailerons 0.0078 | 0.0116 | 0.0090 | 0.0083 | 0.0050

Delta Elevators 0.0126 | 0.0123 | 0.0065 | 0.0130 | 0.0068

Machine CPU 0.0079 | 0.0177 | 0.0278 | 0.0246 | 0.0367

Table 2: Standard deviations (Dev) of testing RMSE of different algorithms. (I-ELM with 200 hidden nodes)
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I-ELM

Real-World Regression Problems

Problems Training time of I-ELM Training Time # nodes
Sigmoid RBF Sin RAN MRAN RAN MRAN
Abalone 0.2214 0.5030 0.1778 39.928 255.84 186.3 67.7
Auto Price 0.0329 0.0468 0.0188 0.3565 2.5015 23.8 225
Boston Housing 0.0515 0.0657 0.0470 2.0940 22.767 40.5 36.2

California Housing 0.5448 1.3656 0.3872 3301.7 2701.1 4883.0 93.0
Census (House8L) 0.8667 1.7928 0.5194 5399.0 3805.3 6393.2 77.3

Delta Ailerons 0.2620 0.4327 0.1715 237.96 175.07 11181 76.6
Delta Elevators 0.2708 0.6321 0.2261 661.78 331.75 2417.4 76.8
Machine CPU 0.0234 0.0447 0.0297 0.1735 0.2454 6.9 7.0

Table 3: Training time (seconds) and network complexity comparison of different algorithms
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I-ELM

Real-World Regression Problems

Problems I-ELM SGBP (A = 1) SVR
Mean Dev Mean Dev Mean Dev
Abalone 0.0878 | 0.0032 | 0.1175 | 0.0095 | 0.0846 | 0.0013
Auto Price 0.0883 | 0.0036 | 0.2383 | 0.0587 | 0.1052 | 0.0040

Boston Housing 0.1095 | 0.0090 | 0.1882 | 0.0243 | 0.1155 | 0.0079
California Housing | 0.1555 | 0.0021 | 0.1579 | 0.0033 | 0.1311 | 0.0011
Census (House8L) | 0.0871 | 0.0021 | 0.0866 | 0.0025 | 0.0683 | 0.0013

Delta Ailerons 0.0472 | 0.0049 | 0.0459 | 0.0033 | 0.0467 | 0.0010

Delta Elevators 0.0639 | 0.0067 | 0.0653 | 0.0019 | 0.0603 | 0.0005

Machine CPU 0.0491 | 0.0089 | 0.1988 | 0.0429 | 0.0620 | 0.0180

Table 4: Performance comparison (testing RMSE and the corresponding standard deviation) of I-ELM (with 500
random sigmoid hidden nodes), stochastic gradient descent BP (SGBP), and SVR.
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I-ELM

Real-World Regression Problems

Problems I-ELM” SGBP” (\ = 1) SVR?

Time (s) Time (s) # Nodes Time (s) #SVs (C, )
Abalone 0.5560 0.4406 10 1.6123 309.84 | (27,279
Auto Price 0.0954 0.0154 15 0.0042 21.25 (28,279)
Boston Housing 0.1419 0.0579 10 0.0494 46.44 (2%,27%)

California Housing 1.3763 2.0307 10 74.184 | 2189.2 (23,21
Census (House8L) 1.7295 2.7814 30 11.251 810.24 | (2',27 1
Delta Ailerons 0.7058 0.6610 10 0.6726 82.44 (23,273
Delta Elevators 0.7296 0.8830 10 1.1210 260.38 | (2,27?%)
Machine CPU 0.0765 0.0206 10 0.0018 7.8 (20,274

“yun in MATLAB environment. ” run in C executable environment.

Table 5: Performance comparison (training time (seconds)) of I-ELM (with 500 random sigmoid hidden nodes),
stochastic gradient descent BP (SGBP), and SVR.
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I-ELM

Real-World Regression Problems

Problems Testing RMSE Dev of Testing RMSE Training Time (s)

[-ELM SGBP -ELM SGBP -ELM SGBP
(Threshold) (A = 10) (Threshold) (A = 10) (Threshold) (A = 10)

Abalone 0.0951 0.1332 0.0142 0.0102 0.2908 0.4313
Auto Price 0.1141 0.3209 0.0130 0.0665 0.0735 0.0172
Boston Housing 0.1346 0.2196 0.0104 0.0279 0.0907 0.0548
California Housing 0.1828 0.1806 0.0179 0.0226 0.8186 1.9548
Census (House8L) 0.0941 0.1032 0.0062 0.0068 1.0117 2.7359
Delta Ailerons 0.0790 0.0400 0.0397 0.0055 0.3550 0.6375
Delta Elevators 0.0713 0.0895 0.0110 0.0090 0.5102 0.8970
Machine CPU 0.0739 0.2281 0.0140 0.0479 0.0658 0.0215
Table 6: Performance comparison between the approximated threshold network (A = 10) trained by stochastic

gradient descent BP (SGBP) and the true threshold networks trained by I-ELM with 500 threshold nodes:

g(x) = —lico + Li>o-
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

Given a SLFN with any nonconstant piecewise continuous hidden nodes G(x, a, b), if
span{G(x,a,b) : (a,b) € C? x C} is dense in L?, for any continuous target funct|onf
and any randomly generated function sequence {¢.} and any positive integer &,
lim,— o ||f — /|| = 0 holds with probability one if

<()”;,] ) g:f> 3)

By =
! g1

where f =371 B7g ey =f —f; and
& :{gl|m1n(i1—l)k+lgrgi1kH(f fn,l) ﬂngiH}-

G.-B. Huang and L. Chen, “Enhanced random search based incremental extreme learning machine,’

Neurocomputing, vol. 71, pp. 3460-3468, 2008.
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

o Initialization: Let L = 0 and residual error E = 7, where r = [r, - - - ,iy]".
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

Initialization: Let . = 0 and residual error £ = 7, where t = [t;, - - - , 1y]".
Learning step:

while L < Lmax and [|E[| > €

endwhile
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

Initialization: Let . = 0 and residual error £ = 7, where t = [t;, - - - , 1y]".
Learning step:

while L < L. and ||E|| > €
+ Increase by 1 the number of hidden nodes L: L = L + 1.

endwhile
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

Initialization: Let . = 0 and residual error £ = 7, where t = [t;, - - - , 1y]".
Learning step:

while L < L. and ||E|| > €
+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ fori=1:k%

endfor

endwhile
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

Initialization: Let . = 0 and residual error £ = 7, where t = [t;, - - - , 1y]".
Learning step:
while L < L. and ||E|| > €
+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ fori=1:k
Assign random parameters (a(;, b(;)) for the new hidden node L according to any continuous
sampling distribution probability.

endfor

endwhile
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

Initialization: Let . = 0 and residual error £ = 7, where t = [t;, - - - , 1y]".
8 Learning step:
while L < L. and ||E|| > €
+ Increase by 1 the number of hidden nodes L: L = L + 1.
+ fori=1:k%
- Assign random parameters (a ;) , b(;)) for the new hidden node L according to any continuous
sampling distribution probability.

E-HT
Calculate the output weight 6<,) for the new hidden node: ;S(,) = ﬁ
@@ (i)
endfor
endwhile
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

Initialization: Let . = 0 and residual error £ = 7, where t = [t;, - - - , 1y]".
8 Learning step:
while L < L. and ||E|| > €
+ Increase by 1 the number of hidden nodes L: L = L + 1.
+ fori=1:k%
- Assign random parameters (a ;) , b(;)) for the new hidden node L according to any continuous
sampling distribution probability.

E-HT
- Calculate the output weight 6<,) for the new hidden node: ;3(,) = ﬁ
@@ (i)
Calculate the residual error after adding the new hidden node L: E(;y = E — B(;) - H;)
endfor
endwhile
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EI-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

Initialization: Let . = 0 and residual error £ = 7, where t = [t;, - - - , 1y]".
8 Learning step:
while L < L. and ||E|| > €
+ Increase by 1 the number of hidden nodes L: L = L + 1.
+ fori=1:k%
- Assign random parameters (a ;) , b(;)) for the new hidden node L according to any continuous
sampling distribution probability.

E-HT
- Calculate the output weight 6<,) for the new hidden node: ;3(,) = ﬁ
@@ (i)

- Calculate the residual error after adding the new hidden node L: E(;y = E — B(;) - H ;)
endfor

+ Leti* = {i miny <; < [|E) ||} SetE = E(;), ap = agxy, by = b(j=), and B = B(x).

endwhile
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EI-ELM

0.14 T T T T T T T T T
— |-ELM(Sigmoid nodes, Abalone)
— EFELM(Sigmaid nodes, Abalong)
013y — - — |LELM(REF nodes, Census)
s ELELM(RBF nodes, Census)
012

Testing RMSE
o

[=]

. . . . . . . . .
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Learning steps (Mumber of hidden nodes to be added)

Figure 6: The testing error updating curves of EI-ELM and I-ELM
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Testing RMSE

21th node

L
50 100

Learning steps (Mumber of hidden nodes to be added)

Figure 7: Testing RMSE performance comparison between EI-ELM and I-ELM (with Sigmoid hidden nodes) for
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Figure 8: Testing RMSE updating progress with new hidden nodes added and different number of selecting trials  in
Airplane case
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EI-ELM

Real-World Regression Problems

Problems EI-ELM (50 Sigmoid hidden nodes) I-ELM (500 Sigmoid
k=10 | k=20 hidden nodes, k = 1)
Mean | Dev | Mean | Dev Mean ] Dev

Abalone 0.0878 0.0033 0.0876 0.0015 0.0876 0.0033
Ailerons 0.0640 0.0066 0.0571 0.0022 0.0824 0.0232
Airplane 0.0922 0.0061 0.0862 0.0040 0.0898 0.0067
Auto Price 0.0924 0.0112 0.0897 0.0104 0.0948 0.0158
Bank 0.1066 0.0058 0.0896 0.0036 0.0757 0.0032
Boston 0.1133 0.0101 0.1102 0.0061 0.1084 0.0096
California 0.1591 0.0034 0.1548 0.0033 0.1543 0.0019
Census (8L) 0.0899 0.0017 0.0865 0.0011 0.0871 0.0018
Computer Activity 0.1075 0.0057 0.0991 0.0036 0.1057 0.0078
Delta Ailerons 0.0474 0.0062 0.0467 0.0042 0.0468 0.0052
Delta Elevators 0.0615 0.0049 0.0586 0.0038 0.0640 0.0055
Kinematics 0.1420 0.0029 0.1416 0.0019 0.1406 0.0014
Machine CPU 0.0498 0.0155 0.0467 0.0148 0.0474 0.0040
Puma 0.1846 0.0018 0.1827 0.0017 0.1856 0.0039
Pyrim 0.1514 0.0419 0.1300 0.0405 0.1712 0.0626
Servo 0.1634 0.0129 0.1558 0.0121 0.1589 0.0124

Table 7: Performance comparison between EI-ELM with 50 Sigmoid hidden nodes and I-ELM with 500 Sigmoid
hidden nodes
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EI-ELM

Real-World Regression Problems

Problems EI-ELM (50 RBF hidden nodes) I-ELM (500 RBF
k= 10 | k=20 hidden nodes, k = 1)

Mean | Dev | Mean | Dev Mean ] Dev

Abalone 0.0907 0.0034 0.0871 0.0023 0.0872 0.0022
Ailerons 0.0973 0.0229 0.0775 0.0033 0.1129 0.0295
Airplane 0.0943 0.0168 0.0813 0.0102 0.0772 0.0082
Auto Price 0.1187 0.0159 0.1104 0.0148 0.1231 0.0133
Bank 0.0989 0.0031 0.0888 0.0023 0.0843 0.0058
Boston 0.1197 0.0107 0.1171 0.0078 0.1214 0.0103
California 0.1624 0.0049 0.1579 0.0027 0.1582 0.0027
Census (8L) 0.0864 0.0026 0.0846 0.0020 0.0860 0.0018

Computer Activity 0.1295 0.0068 0.1201 0.0024 0.1358 0.0177
Delta Ailerons 0.0469 0.0067 0.0466 0.0039 0.0544 0.0076
Delta Elevators 0.0603 0.0049 0.0602 0.0039 0.0685 0.0099

Kinematics 0.1346 0.0025 0.1306 0.0019 0.1425 0.0095
Machine CPU 0.0622 0.0281 0.0511 0.0114 0.0614 0.0274
Puma 0.1789 0.0020 0.1770 0.0012 0.1850 0.0119
Pyrim 0.1214 0.0345 0.0989 0.0286 0.2179 0.1545
Servo 0.1487 0.0133 0.1434 0.0120 0.1410 0.0151

Table 8: Performance comparison between EI-ELM with 50 RBF hidden nodes and I-ELM with 500 RBF hidden
nodes
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OS-ELM

Nature of Sequential Learning

G.-B. Huang, et al., “A generalized growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 57-67, 2005.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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OS-ELM

Nature of Sequential Learning

Natural Learnin

@ The training observations are sequentially (one-by-one or
chunk-by-chunk with varying or fixed chunk length) presented to the
learning algorithm/system.

G.-B. Huang, et al., “A generalized growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 57-67, 2005.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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OS-ELM

Nature of Sequential Learning

Natural Learnin

@ The training observations are sequentially (one-by-one or
chunk-by-chunk with varying or fixed chunk length) presented to the
learning algorithm/system.

©@ At any time, only the newly arrived single or chunk of observations
(instead of the entire past data) are seen and learned.

G.-B. Huang, et al., “A generalized growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 57-67, 2005.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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OS-ELM

Nature of Sequential Learning

Natural Learning

@ The training observations are sequentially (one-by-one or
chunk-by-chunk with varying or fixed chunk length) presented to the
learning algorithm/system.

@ At any time, only the newly arrived single or chunk of observations
(instead of the entire past data) are seen and learned.

© A single or a chunk of training observations is discarded as soon as the
learning procedure for that particular (single or chunk of) observation(s)
is completed.

G.-B. Huang, et al., “A generalized growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 57-67, 2005.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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OS-ELM

Nature of Sequential Learning

Natural Learning

@ The training observations are sequentially (one-by-one or
chunk-by-chunk with varying or fixed chunk length) presented to the
learning algorithm/system.

@ At any time, only the newly arrived single or chunk of observations
(instead of the entire past data) are seen and learned.

© A single or a chunk of training observations is discarded as soon as the
learning procedure for that particular (single or chunk of) observation(s)
is completed.

© The learning algorithm/system has no prior knowledge as to how many
training observations will be presented.

G.-B. Huang, et al., “A generalized growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 57-67, 2005.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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OS-ELM

Popular Sequential Learning Methods

RAN Based
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OS-ELM

Popular Sequential Learning Methods

RAN Based

o RAN, MRAN, GAP-RBF, GGAP-RBF
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OS-ELM

Popular Sequential Learning Methods

RAN Based
o RAN, MRAN, GAP-RBF, GGAP-RBF
e At any time, only the newly arrived single observation is seen and learned
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OS-ELM

Popular Sequential Learning Methods

RAN Based
@ RAN, MRAN, GAP-RBF, GGAP-RBF
Q At any time, only the newly arrived single observation is seen and learned

Q They do not handle chunks of training observations
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OS-ELM

Popular Sequential Learning Methods

@ RAN, MRAN, GAP-RBF, GGAP-RBF
Q At any time, only the newly arrived single observation is seen and learned
Q They do not handle chunks of training observations

0 Many control parameters need to be fixed by human. Very laborious! Very
tedious!
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OS-ELM

Popular Sequential Learning Methods

@ RAN, MRAN, GAP-RBF, GGAP-RBF
Q At any time, only the newly arrived single observation is seen and learned
Q They do not handle chunks of training observations

0 Many control parameters need to be fixed by human. Very laborious! Very
tedious!

e Training time is usually huge!!
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OS-ELM

Popular Sequential Learning Methods

@ RAN, MRAN, GAP-RBF, GGAP-RBF
Q At any time, only the newly arrived single observation is seen and learned
Q They do not handle chunks of training observations

0 Many control parameters need to be fixed by human. Very laborious! Very
tedious!

© Training time is usually huge!!
0 Many control parameters need to be fixed by human
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OS-ELM

Popular Sequential Learning Methods

@ RAN, MRAN, GAP-RBF, GGAP-RBF
Q At any time, only the newly arrived single observation is seen and learned
Q They do not handle chunks of training observations

0 Many control parameters need to be fixed by human. Very laborious! Very
tedious!

© Training time is usually huge!!
0 Many control parameters need to be fixed by human

BP Based
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OS-ELM

Popular Sequential Learning Methods

@ RAN, MRAN, GAP-RBF, GGAP-RBF
Q At any time, only the newly arrived single observation is seen and learned
Q They do not handle chunks of training observations

0 Many control parameters need to be fixed by human. Very laborious! Very
tedious!

© Training time is usually huge!!
0 Many control parameters need to be fixed by human

BP Based

0 Stochastic gradient BP (SGBP)
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OS-ELM

Popular Sequential Learning Methods

@ RAN, MRAN, GAP-RBF, GGAP-RBF
Q At any time, only the newly arrived single observation is seen and learned
Q They do not handle chunks of training observations

0 Many control parameters need to be fixed by human. Very laborious! Very
tedious!

© Training time is usually huge!!
0 Many control parameters need to be fixed by human

BP Based
0 Stochastic gradient BP (SGBP)
Q It may handle chunks of training observations
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OS-ELM

Online Sequential ELM (OS-ELM)

Learning Model

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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OS-ELM

Online Sequential ELM (OS-ELM)

Learning Model

o Initialization phase: where batch ELM is used to initialize the learning system.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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OS-ELM

Online Sequential ELM (OS-ELM)

Learning Model

o Initialization phase: where batch ELM is used to initialize the learning system.

e Sequential learning phase: where recursive least square (RLS) method is
adopted to update the learning system sequentially.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.

learning-machines. Theories, Incremental/Seque



OS-ELM

Online Sequential ELM (OS-ELM)

R [2] ’
B =K;! { g(f r [ ?} (5)

=K, '(K;8 — H/H,; 8 + H]T})
= O £ K 'HI (T, — H,5©)

where (1) is the output weight for all the data learned so far,

T
H H _
e [ HO ] [ HO } = Ko+H{H,, Ko = H{H,, 3 = K{'H{ Ty
1 1
(6)
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OS-ELM

Real-World Regression Problems

Datasets Algorithms Time RMSE # nodes
(seconds) Training Testing
OS-ELM (Sigmoid) 0.0444 0.0680 0.0745 25
OS-ELM (RBF) 0.0915 0.0696 0.0759 25
Stochastic BP 0.0875 0.1112 0.1028 13
Auto-MPG GAP-RBF 0.4520 0.1744 0.1404 312
MRAN 1.4644 0.1086 0.1376 446
OS-ELM (Sigmoid) 0.5900 0.0754 0.0777 25
OS-ELM (RBF) 1.2478 0.0759 0.0783 25
Stochastic BP 0.7472 0.0996 0.0972 11
Abalone GAP-RBF 83.784 0.0963 0.0966 23.62
MRAN 1500.4 0.0836 0.0837 87571
OS-ELM (Sigmoid) 3.5753 0.1303 0.1332 50
[ OS-ELM (RBF) 6.9629 0.1321 0.1341 50
California Stochastic BP 1.6866 0.7688 0.1704 9
Housing GGAP-RBF 115.34 0.1417 0.1386 18
MRAN 2891.5 0.1598 0.1586 64

Table 9: Comparison between OS-ELM and other sequential algorithms on regression applications.
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OS-ELM

Real-World Classification Problems

Datasets Algorithms Time Accuracy (%) # nodes
(seconds) Training Testing

OS-ELM (Sigmoid) 9.9981 97.00 94.88 180

Image OS-ELM (RBF) 12.197 96.65 94.53 180
Segmentation Stochastic BP 2.5776 83.71 82.55 80

GAP-RBF 1724.3 - 89.93 44.2

MRAN 7004.5 - 93.30 53.1

OS-ELM (Sigmoid) 302.48 91.88 88.93 400

Satellite - 319.14 93.18 89.01 400
Image Stochastic BP 3.1415 85.23 83.75 25

MRAN 2469.4 - 86.36 20.4

OS-ELM (Sigmoid) 16.742 95.79 93.43 200

DNA OS-ELM (RBF) 20.951 96.12 94.37 200
Stochastic BP 1.0840 85.64 8211 12
MRAN 6079.0 - 86.85 5

Table 10: Comparison between OS-ELM and other sequential algorithms on classification applications.

heories, Incremental/Sequent



OS-ELM

Time-Series Problems

Algorithms Time (seconds) Training RMSE Testing RMSE #nodes
OS-ELM (Sigmoid) 71148 0.0177 0.0183 120
OS-ELM (RBF) 10.0603 0.0184 0.0186 120
GGAP-RBF 24.326 0.0700 0.0368 13
MRAN 57.205 0.1101 0.0337 16
RANEKF 62.674 0.0726 0.0240 23
RAN 58.127 0.1006 0.0466 39

Table 11: Comparison between OS-ELM and other sequential algorithms on Mackey-Glass time series application.
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OS-ELM

Real-World Regression Problems

Datasets Activation Algorithms Learning Time RMSE #
Functions Mode (seconds) Training Testing nodes

Sigmoid ELM Batch 0.0053 0.0697 0.0694 25

1-by-1 0.0444 0.0680 0.0745 25

OS-ELM 20-by-20 0.0150 0.0684 0.0738 25

Auto - [10,30] 0.0213 0.0680 0.0765 25

MPG RBF ELM Batch 0.0700 0.0691 0.0694 25

T-by-1 0.0915 0.0696 0.0759 25

OS-ELM 20-by-20 0.0213 0.0686 0.0769 25

[10,30] 0.0250 0.0692 0.0746 25

Sigmoid ELM Batch 0.5122 0.1306 0.1333 50

T-by-1 35753 0.1303 0.1332 50

OS-ELM 20-by-20 0.6500 0.1297 0.1333 50

Callifornia [10,30] 0.8338 0.1302 0.1327 50

Housing RBF ELM Batch 1.0270 0.1292 0.1312 50

T-by-1 6.9629 0.1321 0.1347 50

OS-ELM 20-by-20 0.9794 0.1312 0.1333 50

[10,30] 1.3241 0.1305 0.1326 50

Table 12: Performance comparison of ELM and OS-ELM on regression applications.
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OS-ELM

Real-World Classification Problems

Datasets Activation Algorithms Learning Time Accuracy (%) #

Functions Mode (seconds) Training Testing nodes

Sigmoid ELM Batch 0.6384 96.75 95.07 180

OS-ELM T-by-1 9.9981 97.00 94.88 180

20-by-20 1.0922 97.05 94.60 180

Image [10,30] 0.9881 97.00 94.92 180

Segmentation RBF ELM Batch 1.6300 96.22 94.91 180

OS-ELM T-by-1 12.197 96.65 9453 180

20-by-20 1.4275 96.70 9455 180

[10,30] 1.4456 96.75 94.60 180

Sigmoid ELM Batch 0.9748 96.90 94.30 200

OS-ELM T-by-1 16.743 95.79 93.43 200

20-by-20 1.7322 95.87 93.46 200

DNA [10,30] 1.7875 95.81 93.42 200

RBF ELM Batch 8.2998 95.87 92.33 200

OS-ELM 1-by-1 20.951 96.12 94.37 200

20-by-20 2.6538 96.19 94.30 200

[10,30] 2.8814 96.17 94.25 200

Table 13: Performance comparison of ELM and OS-ELM on classification applications.
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OS-ELM

Time-Series Problems

Activation Algorithms Learning Time RMSE #

Functions Mode (seconds) Training Testing nodes

Sigmoid ELM Batch 1.1664 0.0183 0.0187 120

OS-ELM T-by-1 71184 0.0177 0.0183 120

20-by-20 0.9894 0.0177 0.0183 120

[10,30] 1.0440 0.0185 0.0190 120

RBF ELM Batch 2.1794 0.0185 0.0180 120

OS-ELM 1-by-1 10.060 0.0184 0.0186 120

20-by-20 1.5574 0.0183 0.0186 120

[10,30] 1.7447 0.0184 0.0187 120

Table 14: Performance comparison of ELM and OS-ELM on Mackey-Glass time series application.
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OS-ELM

Intelligent Photo Notification System For Twitter Service

1.upload a photo image

‘>T\vmer Client ‘ ’ ﬁgé&ge,ph;, H- 2.recognize who appear within a photo and
generate output xml

| Tomcat Server

v
! <xml version="1.0" encoding="euc-ke* 2>
- 1 - <response>
| PHP engine Face Detection& ! <emors0</error>
i o Recognition — C/C++ i <users>userA</users>
! >
Windows | cuserssusercC</userss
| 1 lresponse>

l 3.parse xml and send a messages

foreach($xm|->users as $key => $val) {
$postData = array(‘user => (String)$val, "text’'=>"New picture is uploaded’);
$resp = $connection->post('direct_messages/new . $postData);

————

K. Choi, et al., “Incremental face recognition for large-scale social network services”, Pattern Recognition, vol. 45,

pp. 2868-2883, 2012.
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OS-ELM

Intelligent Photo Notification System For Twitter Service
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Figure 9: Binary Gabor filter-based OS-ELM (BG-OSELM)

Methods Baseline Sequential Subspace Sequential Classifiers
Database PCA FDA CCIPCA IPCA ILDA OSELM BG-OSELM(S) BG-OSELM(V)
AR 77.0 72.3 55.0 77.3 76.6 80.3 92.0 87.6
EYALE 99.7 96.9 58.5 99.7 100.0 100.0 99.7 99.7
BIOID 98.1 97.3 91.6 97.5 - 98.5 97.4 96.7
ETRI 95.8 95.5 86.9 95.4 - 97.2 97.0 94.2

Table 15: Performance comparison of different sequential methods.
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OS-ELM

Online Sequential Human Action Recognition

Figure 10: Example frames from top row: Weizmann dataset, middle row: KTH dataset, and bottom row: UCF
sports dataset

R. Minhas, et al., “Incremental learning in human action recognition based on Snippets”, (in press) IEEE

Transactions on Circuits and Systems for Video Technology, 2012.
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OS-ELM

Online Sequential Human Action Recognition
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R. Minhas, et al., “Incremental learning in human action recognition based on Snippets”, (in press) IEEE

Transactions on Circuits and Systems for Video Technology, 2012.
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OS-ELM

Online Sequential Human Action Recognition

Figure 11: Tracking results using action videos of run, kick, golf and dive (top to bottom) from UCF Sports dataset
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OS-ELM

Weizmann dataset
Methods OS-ELM Based [32] [14] [36] [11]
Frames i 3/3 6/6 10/10 1712 179 171 777 10/10 8/8 20/20
Accuracy 65.2 95.0 99.63 99.9 55.0 93.8 93.5 96.6 99.6 97.05 98.68
KTH dataset
Methods OS-ELM Based [25] [33] [43] [14] [36] [12]
Frames 11 3/3 6/6 10/10 - - - - 11 7r7 20/20
Accuracy 74.4 88.5 92.5 94.4 91.3 90.3 83.9 91.7 88.0 90.9 90.84
Table 16: Classification comparison against different approaches at snippet-level.
Weizmann dataset
Methods OS-ELM Based [2] [32] [14] [36] [41] [30] [11]
Frames 171 3/3 6/6 10/10 - - - - - - -
Accuracy 100.0 100.0 100.0 100.0 100.0 72.8 98.8 100.0 97.8 99.44 100.0
KTH dataset
Methods OS-ELM Based [14] [36] [30] [21] [27] [9] [44]
Frames 171 3/3 6/6 10/10 - - - - - - -
Accuracy 92.8 93.5 95.7 96.1 91.7 92.7 94.83 95.77 97.0 96.7 95.7

Table 17: Classification comparison against different approaches at sequence-level.

R. Minhas, et al., “Incremental learning in human action recognition based on Snippets”, (in press) IEEE

Transactions on Circuits and Systems for Video Technology, 2012.
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Open Problems

@ As observed in experimental studies, the performance of basic ELM is
stable in a wide range of number of hidden nodes. Compared to the BP
learning algorithm, the performance of basic ELM is not very sensitive
to the number of hidden nodes. However, how to prove it in theory
remains open.

@ One of the typical implementations of ELM is to use random nodes in
the hidden layer and the hidden layer of SLFNs need not be tuned. It is
interesting to see that the generalization performance of ELM turns out
to be very stable. How to estimate the oscillation bound of the
generalization performance of ELM remains open too.

© It seems that ELM performs better than other conventional learning
algorithms in applications with higher noise. How to prove it in theory is
not clear.

@ ELM always has faster learning speed than LS-SVM if the same kernel
is used?
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Open Problems

© ELM provides a batch learning kernel solution which is much simpler
than other kernel learning algorithms such as LS-SVM. It is known that
it may not be straightforward to have an efficient online sequential
implementation of SVM and LS-SVM. However, due to the simplicity of
ELM, is it possible to implement the online sequential variant of the
kernel based ELM?

© ELM always provides similar or better generalization performance than
SVM and LS-SVM if the same kernel is used (if not affected by
computing devices’ precision)?

@ ELM tends to achieve better performance than SVM and LS-SVM in
multiclasses applications, the higher the number of classes is, the larger
the difference of their generalization performance will be?

© Scalability of ELM with kernels in super large applications.
© Parallel and distributed computing of ELM.
@ ELM will make real-time reasoning feasible?
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