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A Brief Tutorial

Extreme Learning Machines (ELM) 
– Filling the Gap between Frank Rosenblatt's Dream and 

John von Neumann's Puzzle?
（超限学习机 - 填补Frank Rosenblatt梦想到John von 

Neumann的困惑之间的空白?）
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• Part I - ELM Philosophy and Generalized SLFN Cases: 
– Neural networks and machine learning history

– Rethink machine learning and artificial intelligence

– Philosophy and belief of Extreme Learning Machines (ELM)

• Do we really need so many different type of learning algorithms for 
so many type of networks (various types of SLFNs, regular and 
irregular multi-layers of networks, various type of neurons)?

• Can the gap between machine learning and biological learning be 
filled? 

• Should learning be transparent or of blackbox? 

• SVM provides suboptimal solutions.

– Machine learning and Internet of Things

– Machine intelligence and human intelligence

Outline
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• Part II – Hierarchical ELM
– Unsupervised/semi supervised ELM

– Feature learning

– Hierarchical ELM

– ELM + (other algorithms)

• Part III – ELM Theories and Open Problems
– ELM theories: 

• Universal approximation capability

• Classification capability

– Incremental learning

– Online sequential learning

– Open problems

Outline



Part I

ELM Philosophy and Generalized 
SLFN Cases
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• Cognition Dream in 60 Years Ago …

– “Rosenblatt made statements about the perceptron 
that caused a heated controversy among the 
fledgling AI community.”

– Cognition: “Based on Rosenblatt's statements, The 
New York Times reported the perceptron to be 
"the embryo of an electronic computer that [the 
Navy] expects will be able to walk, talk, see, write, 
reproduce itself and be conscious of its existence”

http://en.wikipedia.org/wiki/Perceptron

Frank Rosenblatt: Perceptron
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• “AI Winter” in 1970s
– “Beautiful mistakes” [Minsky and Papert 1969]: Minsky claimed in his book that 

the simple XOR cannot be resolved by two-layer of feedforward neural 
networks, which “drove research away from neural networks in the 
1970s, and contributed to the so-called AI winter.” [Wikipedia2013]

Perceptron and AI Winter
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Three Waves of Machine Learning

1950s-1980s: Warm up

Features: computers not 
powerful, no efficient 
algorithms, no enough 
data
Situation: Chinese 
people already had good 
dream since the inception 
of computers and called 
computers as “Electronic 
Brains （电脑）”

1980s-2010: Research 
driven

Features: computers 
very powerful, many 
efficient algorithms 
developed, no enough 
data in many cases
Situation: more driven 
by researchers instead of 
industries 

2010 – Present: Data 
driven

Features: computers 
powerful enough, 
powerful and smart 
computing 
sensors/devices 
everywhere, huge data 
coming. Efficient 
algorithms under way
Situation; No matter 
you admit or not, we 
have to rely on machine 
learning from now on
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Rethink Artificial Intelligence and 
Machine Learning

1950s 1970s 2010 Present Time

Machine Learning

Artificial Intelligence

1980s

AI Winter 
(1970s)

Neural Networks reviving
Almost all Deep Learning  
(CNN, BP, etc) techniques 
proposed in 1980s

ELMs born in 2004
Deep Learning reviving in 2004
due to  high performance of computing

ELMs’ direct 
biological 
evidence found 
in 2012

SVM proposed
in 1990s

Rosenblatt’s 
perceptron proposed 
in 1950s
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Necessary Conditions of Machine 
Learning Era

Three necessary conditions of true 
machine learning era, which have 

been fulfilling since 2010

Efficient 
learning 

algorithms

Powerful 
computing 

environment

Rich 
dynamic 

data
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Feedforward Neural Networks

Output of additive hidden nodes:
ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ሺ܉௜ · ܠ ൅ ܾ௜ሻ

Output of RBF hidden nodes:
ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ሺܾ௜ ܠ െ ௜܉ ሻ

The output function of SLFNs is:

௅݂ ݔ ൌ෍ ઺௜ܩሺ܉௜, ܾ௜, 	ሻܠ
௅

௜ୀଵ

઺௜: Output weight vector 
connecting the ݅th hidden node and 
the output nodes
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• Mathematical Model
– Approximation capability [Leshno 1993, Park and Sandberg 1991]:  Any 

continuous target function ݂ሺܠሻ can be approximated by SLFNs 
with adjustable hidden nodes. In other words, given any small 
positive value ߝ, for SLFNs with enough number of hidden nodes 
we have ௅݂ (ܮ) ܠ െ ݂ሺܠሻ ൏ .ߝ

– Classification capability [Huang, et al 2000]: As long as SLFNs can 
approximate any continuous target function ݂ሺܠሻ, such SLFNs can 
differentiate any disjoint regions.

Feedforward Neural Networks

M. Leshno, et al., “Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,” Neural 
Networks, vol. 6, pp. 861-867, 1993.
J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Computation, vol. 3, pp. 246-257, 
1991.
G.-B. Huang, et al, “Classification ability of single hidden layer feedforward neural networks,” IEEE Trans. Neural Networks, vol. 11, 
no. 3, pp. 799–801, May 2000.
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• Learning Issue
– Conventional theories: only resolves the existence issue, however, 

does not tackle learning issue at all.

– In real applications, target function ݂ is usually unknown. One 
wishes that unknown ݂ could be approximated by SLFNs ௅݂
appropriately.

Feedforward Neural Networks
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• Learning Methods
– Many learning methods mainly based on gradient-descent / iterative 

approaches have been developed over the past three decades.

• Back-Propagation (BP) [Rumelhart 1986] and its variants are most popular.

– Least-square (LS) solution for RBF network, with single impact factor for 
all hidden nodes. [Broomhead and Lowe 1988]

– QuickNet (White, 1988) and Random vector functional network (RVFL) [Igelnik
and Pao 1995]

– Support vector machines and its variants. [Cortes and Vapnik 1995]

– Deep learning: dated back to 1960s and resurgence in mid of 2000s [wiki 
2015]

Feedforward Neural Networks
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Support Vector Machine – an 
Alternative Solution of SLFN

x

1 n

b

sNs1

SVM optimization formula

minimize:	ܮ௣ ൌ
1
2 ܟ ଶ ൅ ෍ܥ ௜ߦ

ே

௜ୀଵ
subject	to:	ݐ௜ ܟ · ߶ ܠ ൅ ܾ ൒ 1 െ ,௜ߦ ∀݅

௜ߦ ൒ 0, ∀݅

LS-SVM optimization formula

minimize:	ܮ௣ ൌ
1
2 ܟ ଶ ൅ ܥ

1
2෍ ௜ଶߦ

ே

௜ୀଵ
subject	to: ௜ݐ ܟ · ߶ ܠ ൅ ܾ ൌ 1 െ ,௜ߦ ∀݅

The decision function of SVM and LS-SVM is:

݂ ݔ ൌ sign ෍ ܭ௦ݐ௦ߙ ,ܠ ௦ܠ ൅ ܾ
ேೞ

௦ୀଵ

ܭ ,ܠ ଵܠ ܭ ,ܠ ௦ܠ ܭ ,ܠ 	ேೞܠ

݂ ܠ

ଵݐଵߙ ௦ݐ௦ߙ ேೞݐேೞߙ

Typical kernel function: 
ܭ ,ܠ ܡ ൌ exp െߛ ܠ െ ܡ ଶ
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• Interesting 20 Years of Cycles
– Robenblatt’s Perceptron proposed in mid of 1950s, sent to “Winter” in 

1970s

– Back-Propagation (BP) proposed in 1970s, reaching research peak in mid 
of 1990s

– Support vector machines proposed in 1995, reaching research peak early 
this century.  

• There are exceptional cases:
– E.g, most deep learning algorithms proposed in 1960s ~1980s, 

becoming popular only since 2010 (more or less)

Feedforward Neural Networks
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Research in Neural Networks Stuck …?

Conventional Learning Methods Biological Learning
Very sensitive to network size Stable in a wide range (tens to thousands 

of neurons in each module)

Difficult for parallel implementation Parallel implementation

Difficult for hardware implementation “Biological” implementation

Very sensitive to user specified parameters Free of user specified parameters

Different network types for different type of 
applications

One module possibly for several
types of applications

Time consuming in each learning point Fast in micro learning point

Difficult for online sequential learning Nature in online sequential learning

“Greedy” in best accuracy Fast speed and high accuracy

“Brains (devised by conventional learning 
methods)” are chosen after applications are 
present

Brains are built before applications
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• Reasons
– Based on the conventional existence theories: 

• Since hidden nodes are important and critical, we need to find some 
way to adjust hidden nodes. 

• Learning focuses on hidden nodes.

• Learning is tremendously inefficient.

– Intensive research: many departments/groups in almost every 
university/research institution have been spending huge 
manpower on looking for so-called “appropriate” (actually still 
very basic) learning methods in the past 30 years.

• Question
– Is free lunch really impossible? 

– The answer is “seemingly far away, actually close at hand and 
right under nose” “远在天边, 近在眼前”

Research in Neural Networks Stuck …?
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• Do we really need so many different types of learning 
algorithms for so many different types of networks?
– different types of SLFNs

• sigmoid networks

• RBF networks

• polynomial networks

• complex (domain) networks

• Fourier series

• wavelet networks, etc

– multi-layers of architectures

• Do we really need to tune wide type of hidden neurons 
including biological neurons (even whose modeling is 
unknown) in learning?

Fundamental Problems to Be Resolved 
by Extreme Learning Machines (ELM)
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Extreme Learning Machines (ELM)

Output function of “generalized” SLFNs:

௅݂ ݔ ൌ෍ߚ௜ܩ ,௜܉ ܾ௜, ܠ
௅

௜ୀଵ

The hidden layer output function (hidden 
layer mapping, ELM feature space):

ࢎ ݔ ൌ ܩ ,ଵ܉ ܾଵ, ܠ ,⋯ , ܩ ,௅܉ ܾ௅, ࢞

The output functions of hidden nodes can be 
but are not limited to:

Sigmoid:   ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ ௜܉ · ܠ ൅ ܾ௜

RBF:           ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ ܾ௜ ܠ െ ௜܉

Fourier Series: ܩ ,௜܉ ܾ௜, ܠ ൌ cos ௜܉ · ܠ ൅ ܾ௜

1 d

1 i L

1 i L

jx

( , )i iba

Feature learning
Clustering
Regression
Classification

ܮ Random Hidden Neurons (which need not be algebraic 
sum based) or other  ELM feature mappings. Almost any 
nonlinear piecewise continuous hidden nodes: 
݄௜ ܠ ൌ ௜ܩ ,௜܉ ܾ௜, ܠ
Although we don’t know biological neurons’ true output 
functions, most of them are nonlinear piecewise 
continuous, covered by ELM theories.

Problem based 
optimization constraints
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• New Learning Theory - Learning Without Iteratively Tuning Hidden 
Neurons in general architectures: Given any nonconstant piecewise 
continuous function ݃, if continuous target function ݂ ܠ can be 
approximated by SLFNs with adjustable hidden nodes ݃ then the 
hidden node parameters of such SLFNs needn’t be tuned. [Huang, et al 2006, 
2007]

– It not only proves the existence of the networks but also provides learning 
solutions.

– All these hidden node parameters can be randomly generated without training data.

– That is, for any continuous target function ݂ ܠ and any randomly generated 
sequence ܉௜, ܾ௜ ௜ୀଵ

௅ , lim
௅→ஶ

݂ ܠ െ ௅݂ x ൌ lim
௅→ஶ

݂ ܠ െ ∑ ઺௜ܩ ,௜܉ ܾ௜, ௅ܠ
௜ୀଵ ൌ 0 holds 

with probability one if	઺௜ is chosen to minimize ݂ ܠ െ ௅݂ ܠ , ∀݅. [Huang, et al 2006]

• Direct biological evidence later found in 2013 [Fusi, 2013]

Extreme Learning Machines (ELM)

G.-B. Huang, et al., “Universal approximation using incremental constructive feedforward networks with random hidden nodes,” 
IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
G.-B. Huang and L. Chen, “Convex Incremental Extreme Learning Machine,” Neurocomputing, vol. 70, pp. 3056-3062, 2007.
O. Barak, et al, "The importance of mixed selectivity in complex cognitive tasks," Nature, vol.497, pp. 585-590, 2013
M. Rigotti, et al, "The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off," Journal of 
Neuroscience, vol. 33, no. 9, pp. 3844-3856, 2013
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Extreme Learning Machines (ELM)

x

Input space ELM feature space

ሻܠሺܐ

ELM random feature
mapping: ܐሺܠሻ

The hidden layer output function (hidden 
layer mapping, ELM feature space):

ࢎ ݔ ൌ ܩ ,ଵ܉ ܾଵ, ܠ ,⋯ , ܩ ,௅܉ ܾ௅, ࢞

The output functions of hidden nodes can be 
but are not limited to

Sigmoid:   ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ ௜܉ · ܠ ൅ ܾ௜
RBF:           ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ ܾ௜ ܠ െ ௜܉

Fourier Series: ܩ ,௜܉ ܾ௜, ܠ ൌ cos ௜܉ · ܠ ൅ ܾ௜

Conventional Random Projection is just a 
specific case of ELM random feature mapping 
(ELM feature space) when linear additive 
hidden node is used.

Random Projection:   ܩ ,௜܉ ܾ௜, ܠ ൌ ௜܉ · ܠ

ܮ Random Hidden Neurons (which need not be algebraic 
sum based) or other  ELM feature mappings. Almost any 
nonlinear piecewise continuous hidden nodes: 
݄௜ ܠ ൌ ௜ܩ ,௜܉ ܾ௜, ܠ
Although we don’t know biological neurons’ true output 
functions, most of them are nonlinear piecewise 
continuous, covered by ELM theories.
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Extreme Learning Machines (ELM)

x

Input space ELM feature space

ሻܠሺܐ

ELM random feature
mapping: ܐሺܠሻ

The hidden layer output function (hidden 
layer mapping, ELM feature space):

ࢎ ݔ ൌ ܩ ,ଵ܉ ܾଵ, ܠ ,⋯ , ܩ ,௅܉ ܾ௅, ࢞

The output functions of hidden nodes can be 
but are not limited to

Sigmoid:   ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ ௜܉ · ܠ ൅ ܾ௜
RBF:           ܩ ,௜܉ ܾ௜, ܠ ൌ ݃ ܾ௜ ܠ െ ௜܉

Fourier Series: ܩ ,௜܉ ܾ௜, ܠ ൌ cos ௜܉ · ܠ ൅ ܾ௜

Convolutional nodes

Conventional Random Projection is just a 
specific case of ELM random feature mapping 
(ELM feature space) when linear additive 
hidden node is used.

Random Projection:   ܩ ,௜܉ ܾ௜, ܠ ൌ ௜܉ · ܠ

Almost any nonlinear piecewise continuous hidden 
nodes: ݄௜ ܠ ൌ ௜ܩ ,௜܉ ܾ௜, ܠ , including sigmoid 
networks, RBF networks, trigonometric, networks, 
threshold networks, fuzzy inference systems, fully 
complex, neural networks, high-order networks, ridge 
polynomial networks, wavelet networks, convolutional 
neural networks, etc..
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• Essence of ELM
– Hidden layer need not be tuned.

• “randomness” is just one of ELM’s implementation, but not all

• Some conventional methods adopted “semi-randomness”

– Hidden layer mapping ࢎ ܠ satisfies universal approximation 
conditions.

– Minimize: ۶઺ െ ܂ ௣ and ઺ ࢗ

• (norm ݌	and ݍ	could have different values, ݍ ൌ 1, ଵ
ଶ
, 2,⋯)

– It satisfies both ridge regress theory [Hoerl and Kennard 1970] and neural 
network generalization theory [Bartlett 1998].

– It fills the gap and builds bridge among neural networks, SVM, 
random projection, Fourier series, matrix theories, linear systems, 
etc.

Extreme Learning Machines (ELM)
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• Three-Step Learning Model [Huang, et al 2004, 2006]

Given a training set ܠ௜, ௜ܜ ௜ܠ ∈ ,ௗ܀ ௜ܜ ∈ ,௠܀ ݅ ൌ 1,⋯ ,ܰ , hidden 
node output function	ܩ ,܉ ܾ, ܠ , and the number of hidden nodes ܮ,

1) Assign randomly hidden node parameters ,௜܉ ܾ௜ , ݅ ൌ 1,⋯ , .ܮ

2) Calculate the hidden layer output matrix ۶ ൌ
ࢎ ଵܠ
⋮

ࢎ ேܠ
.

3) Calculate the output weights	઺.

ELM Web portal: www.extreme-learning-machines.org

Basic ELM – a L2 Norm Solution
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• Salient Features
– “Simple Math is Enough.” ELM is a simple tuning-free three-step 

algorithm.

– The learning speed of ELM is extremely fast.

– Unlike conventional existence theories, the hidden node parameters 
are not only independent of the training data but also of each other. 
Although hidden nodes are important and critical, they need not 
be tuned.

– Unlike conventional learning methods which MUST see the 
training data before generating the hidden node parameters, ELM 
could generate the hidden node parameters before seeing the training 
data.

– Homogenous architectures for compression, feature learning, 
clustering, regression and classification.

Extreme Learning Machines (ELM)
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• Ridge regression theory based ELM

ࢌ ܠ ൌ ࢎ ܠ ઺ ൌ ࢎ ܠ ࢀ۶ ࢀ۶۶ ି૚܂ ⇒ ࢎ ܠ ࢀ۶ ܫ
ܥ ൅ ࢀ۶۶

ି૚
܂

and

ࢌ ܠ ൌ ࢎ ܠ ઺ ൌ ࢎ ܠ ۶ࢀ۶ ି૚۶܂ࢀ ⇒ ࢎ ܠ
ܫ
ܥ ൅ ۶ࢀ۶

ି૚
܂ࢀ۶

• Equivalent ELM optimization formula

Minimize: ܮ௉ಶಽಾୀ
ଵ
ଶ
઺ ૛ ൅ ܥ ଵ

ଶ
∑ ௜ࣈ ଶே
௜ୀଵ

subject to: ࢎ ௜ܠ ઺ ൌ ௜்࢚ ൅ ,௜்ࣈ ∀݅

Extreme Learning Machines (ELM)
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• Valid for both kernel and non-kernel learning
– Non-kernel based:

ࢌ ܠ ൌ ࢎ ܠ ࢀ۶ ܫ
ܥ ൅ ࢀ۶۶

ି૚
܂

and

ࢌ ܠ ൌ ࢎ ܠ
ܫ
ܥ ൅ ۶ࢀ۶

ି૚
܂ࢀ۶

– Kernel based (if ݄ ܠ is unknown):  ݂ ܠ ൌ
ܭ ,ܠ ଵܠ

⋮
ܭ ,ܠ ேܠ

்

ூ
஼
൅ ா௅ெࢹ

ିଵ
܂

where ா௅ெ೔,ೕࢹ ൌ ࢎ x࢏ · ࢎ ௝ܠ ൌ ܭ ,࢏ܠ ௝ܠ

Extreme Learning Machines (ELM)
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Image Super-Resolution by ELM

From top to down: super-resolution at 2x and 4x. State-of-the-art methods: iterative curve based
interpolation (ICBI), kernel regression based method (KR), compressive sensing based sparse 
representation method (SR). [An and Bhanu 2012]
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Automatic Object Recognition

Object 
Categories

ELM Based AdaBoost
Based

Joint Boosting Scale-Invariant 
Learning

Bikes 94.6 93.4 92.5 73.9

Planes 95.3 90.0 90.2 92.7

Cars 99.0 96.0 90.3 97.0

Leaves 98.3 94.2 - 97.8

Faces 97.9 98.0 96.4 -
[Minhas, et al 2010]

Sample images from CalTech database
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Real Operation of Wind Farms

Situation of the wind measuring towers in Spain and within the eight wind farms. Wind speed prediction in tower 6 of the 
considered wind farm in Spain obtained by the ELM network (prediction using data from 7 towers). (a) Best prediction 
obtained and (b) worst prediction obtained. [Saavedra-Moreno, et al, 2013]
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Electricity Price Forecasting

Average results of market clearing prices (MCP) forecast by ELM in winter: Trading in the Australian
national electricity market (NEM) is based on a 30-min trading interval. Generators submit their offers every 5 min
each day. Dispatch price is determined every 5 min and 6 dispatch prices are averaged every half-hour to determine
the regional MCPs. In order to assist decision-making process for generators, there are totally 48 MCPs needed to
be predicted at the same time for the coming trading day.  [Chen, et al, 2012]
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Remote Control of a Robotic Hand

• An eight wrist motions offline 
classification using linear 
support vector machines with 
little training time (under 10 
minutes).

• This study shows human could 
control the remote side robot 
hand in real-time using his or 
her sEMG signals with less than 
50 seconds recorded training 
data with ELM.[Lee, et al 2011]
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Human Action Recognition

[Minhas, et al 2012]
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3D Shape Segmentation and Labelling

[Xie, et al 2014]

Training time shortened from 8 hours
(conventional methods) to 15 seconds
(ELM solution) for a dataset with 6 
meshes with about 25~30K faces. 
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Constraints of BP and SVM Theory

• Both PDP Group and V. Vapnik have made great 
contributions in neural networks R&D
– Without PDP Group’s work on BP in 1986, neural networks might 

not have revived in 1980’s.

– Without Vapnik’s work on SVM in 1995, neural networks might 
have disappeared although many SVM researchers do not 
consider SVM a kind of solutions to the traditional neural 
networks.

– Without SVM, many applications in pattern recognition, HCI, 
BCI, computational intelligence and machine learning, etc, may 
not have appeared and been so successful.

• However, …
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Constraints of BP and SVM Theory

• However, both BP and SVM over-emphasize some 
aspects of learning and overlook the other aspects, and 
thus, both become incomplete in theory:
– BP gives preference on training but does not consider the stability 

of the system (consistency of minimum norm of weights in neural 
networks, linear system, and matrix theory)

– SVM confines the research in the maximum margin concept 
which limits the research in binary classification and does not 
have direct and efficient solutions to regression and multi-class 
applications. The consistency between maximum margin, 
minimum norm of weights in neural networks and matrix theory 
has been overlooked.
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Essential Considerations of ELM

Real-Time 
Learning 
(in seconds, 

milliseconds, even 
microseconds)

Least User 
Intervention

High 
Accuracy
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• Binary / Threshold node:

• Threshold networks (in fact approximated by sigmoid 
networks in literature) were usually trained by BP and its 
variants indirectly in the past three decades. There was no 
direct learning solution to threshold networks in the past 60 
years.

• Threshold unit can be approximated by sigmoid unit 
with sufficiently large gain parameter 

• With ELM, threshold networks can be trained directly.

ELM for Threshold Networks
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ELM for Threshold Networks
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• Circular functions: 

– tan ݖ ൌ ௘೔೥ି௘ష೔೥

௜ ௘೔೥ା௘ష೔೥
, sin	ሺݖሻ ൌ ௘೔೥ି௘ష೔೥

ଶ௜

• Inverse circular functions:

– arctan ݖ ൌ ׬ ௗ௧
ଵା௧మ

௭
଴ , arcsin ݖ ൌ ׬ ௗ௧

ଵି௧ భ/మ
௭
଴ , arccos ݖ ൌ ׬ ௗ௧

ଵି௧మ భ/మ
௭
଴

• Hyperbolic functions:

– tanh ݖ ൌ ௘೥ି௘ష೥

௘೥ା௘ష೥
, sinh ݖ ൌ ௘೥ି௘ష೥

ଶ

• Inverse hyperbolic functions:

– arctanh ݖ ൌ ׬ ௗ௧
ଵି௧మ

௭
଴ , arcsinh ݖ ൌ ׬ ௗ௧

ଵା௧మ భ/మ
௭
଴

ELM for Complex Networks



41

ELM for Complex Networks

• Wireless Communication Channel Equalizer
– Channel model with nonlinear distortion for 4-QAM signals.

௡ݖ ൌ ௡݋ ൅ ௡ଶ݋0.1 ൅ ௡ଷ݋0.05 ൅ ,௡ݒ ܰ~௡ݒ 0, 0.01

௡݋ ൌ 0.34 െ ݅0.27 ௡ݏ ൅ 0.87 ൅ ݅0.43 ௡ିଵݏ ൅ 0.34 െ ݅0.21 ௡ିଶݏ

Complex activation function used in ELM: tanh ݖ ൌ ௘೥ି௘ష೥

௘೥ା௘ష೥
, where 

ݖ ൌ ܉ · ܢ ൅ ܾ
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ELM for Complex Networks

Eye diagram of the outputs of different 
equalizers (a) C-ELM (ELM with 
complex hidden nodes), (b) CBP
(Complex valued BP), (c) CMRAN 
(Complex valued MRAN), (d) CRBF 
(Complex valued RBF).

• Wireless Communication Channel Equalizer
– Channel model with nonlinear distortion for 4-QAM signals.
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ELM for Complex Networks

SER versus SNR: (a) Linear DFE. (b) 
Volterra DFE. (c) Bilinear DFE. (d) 
represents average ESN (Echo State 
Network) performance with randomly 
generated reservoirs. (e) indicates 
performance of best network chosen 
from the networks averaged in (d). 
From H. Jaeger and H. Haas, Science, 
vol. 404, pp. 78-80, 2004.

• Save Energy in Wireless Communication

Compared with ESN, ELM reduces the error rate by 1000 times or 
above.



Why SVM / LS-SVM Are 
Suboptimal
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• ELM: Based on Equality Constraint Conditions [Huang, et al 2012]

– ELM optimization formula:

Minimize: ܮ௉ಶಽಾୀ
ଵ
ଶ
઺ ଶ ൅ ܥ ଵ

ଶ
∑ ௜ࣈ ଶே
௜ୀଵ

subject to: ࢎ ௜ܠ ઺ ൌ ௜்࢚ ൅ ,௜்ࣈ ∀݅

– The corresponding dual optimization problem:

Minimize: ஽ಶಽಾܮ ൌ ଵ
ଶ
઺ ଶ ൅ ܥ ଵ

ଶ
∑ ௜ࣈ ଶ െ ∑ ∑ ൫ࢎ ௜ܠ ઺ െ ௜்࢚ ൅௠

௝ୀଵ
ே
௜ୀଵ

ே
௜ୀଵ

௜ࢻ௜்൯ࣈ

subject to: ઺ ൌ ,હࢀ۶ ௜ࢻ ൌ ,௜ࣈܥ ࢎ ௜ܠ ઺ െ ௜்࢚ ൅ ௜்ࣈ ൌ 0, ∀݅

Optimization Constraints of ELM and 
LS-SVM
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• LS-SVM: Based on Equality Constraint Conditions [Suykens and 
Vandewalle 1999]

– LS-SVM optimization formula:

Minimize: ܮ௉ಽೄషೄೇಾୀ
ଵ
ଶ
ܟ ଶ ൅ ܥ ଵ

ଶ
∑ ௜ଶேߦ
௜ୀଵ

subject to: ௜ݐ ܟ · ߶ ௜ܠ ൅ ܾ ൌ 1 െ ௜ߦ , ∀݅

– The corresponding dual optimization problem:

Minimize: ܮ஽ಽೄషೄೇಾ ൌ ଵ
ଶ
ܟ ଶ ൅ ܥ ଵ

ଶ
∑ ௜ଶߦ െ ∑ ௜ݐ௜൫ߙ ܟ · ߶ ௜ܠ ൅ ܾ െே

௜ୀଵ
ே
௜ୀଵ

1 ൅ ௜ߦ ൯

subject to:

ܟ ൌ෍ ߶௜ݐ௜ߙ ௜ܠ
ࡺ

ୀ૚࢏
, ௜ߙ ൌ ,௜ߦܥ ௜ݐ ܟ · ߶ ௜ܠ ൅ ܾ െ 1 ൅ ௜ߦ ൌ 0, ∀݅

෍ ௜ݐ௜ߙ ൌ 0
ே

௜ୀଵ

Optimization Constraints of ELM and 
LS-SVM

In LS-SVM optimal ߙ௜ are found 
from one hyper plane
∑ ௜ݐ௜ߙ ൌ 0ே
௜ୀଵ
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• ELM: Based on Inequality Constraint Conditions [Huang, et al 
2010]

– ELM optimization formula:

Minimize: ܮ௉ಶಽಾୀ
ଵ
ଶ
઺ ଶ ൅ ܥ ∑ ௜ேߦ

௜ୀଵ

subject to: ࢎ௜ݐ ௜ܠ ઺ ൒ 1 െ ௜ߦ , ∀݅

௜ߦ	 ൒ 0, ∀݅

– The corresponding dual optimization problem:

Minimize: ஽ಶಽಾܮ ൌ ଵ
ଶ
∑ ∑ ௝ேߙ௜ߙ௝ݐ௜ݐ

௝ୀଵ ࢎ ௜ܠ · ࢎ ௝ேܠ
௜ୀଵ െ ∑ ௜ேߙ

௜ୀଵ

subject to: 0 ൑ ௜ߙ ൑ ,ܥ ∀݅

Optimization Constraints of ELM and 
SVM
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• SVM: Based on Inequality Constraint Conditions [Cortes and 
Vapnik 1995]

– SVM optimization formula:

Minimize: ܮ௉ೄೇಾୀ
ଵ
ଶ
ܟ ଶ ൅ ܥ ∑ ௜ேߦ

௜ୀଵ

subject to: ௜ݐ ܟ · ߶ ௜ܠ ൅ ܾ ൒ 1 െ ௜ߦ , ∀݅

௜ߦ ൒ 0, ∀݅

– The corresponding dual optimization problem:

Minimize: ܮ஽ೄೇಾ ൌ ∑ ∑ ௝ேߙ௜ߙ௝ݐ௜ݐ
௝ୀଵ ߶ ௜ܠ · ߶ ௝ேܠ

௜ୀଵ െ ∑ ௜ேߙ
௜ୀଵ

subject to: 0 ൑ ௜ߙ ൑ ,ܥ ∀݅

∑ ௜ݐ௜ߙ ൌ 0ே
௜ୀଵ

Optimization Constraints of ELM and 
SVM

In SVM optimal ߙ௜ are found from 
one hyper plane ∑ ௜ݐ௜ߙ ൌ 0ே

௜ୀଵ

1

N

i

C

C

C
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Optimization Constraints of ELM and 
SVM

1

N

i

C

C

C

1

N

i

C

C

C

ELM’s inequality constraint variant  [Huang, et al 2010] SVM

ELM (based on inequality constraint conditions) and SVM have the same dual optimization 
objective functions, but in ELM optimal ߙ௜	are found from the entire cube	 0, ܥ ே while in SVM 
optimal ߙ௜ are found from one hyperplane ∑ ௜ݐ௜ߙ ൌ 0ே

௜ୀଵ within the cube 0, ܥ ே. SVM always 
provides a suboptimal solution, so does LS-SVM.
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SVM’s Suboptimal Solutions

• Reasons
– SVM’s historical role is irreplaceable! Without SVM and Vapnik, 

computational intelligence may not be so successful and the history of 
computational intelligence would be re-written! However ...

– SVM always searches for the optimal solution in the hyperplane
∑ ௜ݐ௜ߙ ൌ 0ே
௜ୀଵ 	within the cube 0, ܥ ே of the SVM feature space.

– SVMs may apply similar application-oriented constraints to 
irrelevant applications and search similar hyper planes in feature 
space if their target labels are similar. Irrelevant applications may 
become relevant in SVM solutions.

[Huang, et al 2010]

1

N

i

C

C

C
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SVM’s Suboptimal Solutions

• Reasons
– SVM is too “generous” on the feature mappings and kernels, 

almost condition free except for Mercer’s conditions.

1) As the feature mappings and kernels need not satisfy universal 
approximation condition, ܾ must be present.

2) As ܾ exists, contradictions are caused.

3) LS-SVM inherits such “generosity” from the conventional SVM
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SVM’s Suboptimal Solutions

Origin of 
ELM feature space ࢎ

Origin of 
SVM feature space ߶

As SVM was originally proposed for classification, universal approximation capability was not 
considered at the first place. Actually the feature mappings ߶ ܠ are unknown and may not 
satisfy universal approximation condition, ܾ must be present to absorb the system error. ELM 
was originally proposed for regression, the feature mappings ࢎ ܠ are known and universal 
approximation capability was considered at the first place. In ELM the system error tends to be 
zero and ܾ should not be present.

઺ࢎ ܠ =0

઺ࢎ ܠ =+1

઺ࢎ ܠ =-1

2
઺

2
ܟ

ܾ
ܟ

ܟ · ߶ ܠ ൅ ܾ ൌ െ1

ܟ · ߶ ܠ ൅ ܾ ൌ ൅1

ܟ · ߶ ܠ ൅ ܾ ൌ0
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SVM’s Suboptimal Solutions

• Maximum margin?

– Maximum margin is good to binary classification cases. However, 
if only considering maximum margin, one may not be able to 
imagine “maximum margin” in multi-class / regression 
problems.

– To over-emphasize “maximum margin” makes the SVM research 
deadlock in binary classification and difficult to find the direct 
solution to multi-class applications

– “Maximum margin” is just a special case of ridge regression 
theory, linear system stability, and neural network generalization 
performance theory in binary applications.

• ELM integrates the ridge regression theory, linear system stability, 
and neural network generalization performance theory for 
regression and multiclass applications, “maximum margin” is just a 
special case in ELM’s binary applications.
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SVM’s Suboptimal Solutions

• Data distortion in multi-class classifications?
– Different from ELM, SVM and LS-SVM do not have direct 

solutions to multi-class applications. Usually SVM and LS-SVM 
use One-Against-One (OAO) or One-Against-All (OAA) methods 
to handle multi-class applications indirectly, which may distort 
applications.

G.-B. Huang, et al., “Extreme learning machine for regression and multiclass classification”, IEEE Transactions on Systems, Man 
and Cybernetics - Part B, vol. 42, no. 2, pp. 513-529, 2012.
G.-B. Huang, “An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels”, Cognitive 
Computation, 2014.
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ELM and SVM

d Input Nodes

߮ሺ࢞ሻ

Unknown features in each layer, black box, lose layer wise information 

Binary Output

(a) SVM

ELM

d Input Nodes m Output NodesELM Feature Space ELM Feature Space

Layer wide features are learned, white box
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Relationship and Difference Between 
ELM and SVM/LS-SVM
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ELM vs QuickNet / RVFL

1 d

1 i L

1 i L

jx

( , )i iba

Problem based 
optimization constraints

1 d

1d

jo

jx

Enhanced Patterns
(specific ELM feature mapping
such as sigmoid nodes and 
RBF nodes)

Ld 

QuickNet (1989, not patented) / RVFL (1994, patented) ELM (not patented)

௅݂ ܠ ൌ ෍ߚ௜ܩ௦௜௚,ோ஻ி ൅ ࢻ · ܠ
௅

௜ୀଵ
௅݂ ܠ ൌ෍ߚ௜ܩ ,௜܉ ܾ௜, ܠ

௅

௜ୀଵ

Mainly on sigmoid and RBF nodes, not applicable to kernels learning Proved on general cases: any piecewise continuous nodes. ELM theories 
extended to biological neurons whose mathematical formula is even unknown

Not feasible for multi-layer of RVFL, losing learning in auto-encoder and 
feature learning. RVFL and PCA/Random project are different

Efficient for multi-layer of ELM, auto-encoder, and feature learning, PCA and
random projects are specific cases of ELM when linear neurons are used.

If ELM’s optimization is used in QuickNet (1988) / RVFL and Schimidt
(1992), a suboptimal solution tends to be achieved.

Regularization of output weights, ridge regression theories, neural networks 
generalization performance theories (maximal margin in binary class cases), 
SVM and LS-SVM provide suboptimal solutions.

Hidden layer output matrix: [HELM for Sig or RBF, X N x d] Hidden layer output matrix: HELM for almost any nonlinear piecewise neurons

Homogenous architectures for compression, feature learning, clustering, 
regression and classification
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Relationship and Difference Between 
ELM and QuickNet/RVFL, Duin’s Work

G.-B. Huang, “What are Extreme Learning Machines? Filling the Gap between Frank Rosenblatt’s Dream and John von 
Neumann’s Puzzle”, Cognitive Computation, vol. 7, pp. 263-278, 2015.



Part II

Hierarchical ELM
- Layer-wise learning 

- but learning without iteratively tuning hidden neurons
- output weights analytically calculated by closed-forms solutions in many 

applications
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Multi-Layer ELM

d Input Nodes L Hidden Nodes m Output Nodes

ELM Feature Mapping
/ ELM Feature Space

ELM Learning

d Input Nodes m Output NodesELM Feature Space ELM Feature Space

Different from Deep Learning, All the hidden neurons in ELM as 
a whole are not required to be iteratively tuned
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ELM as Auto-Encoder (ELM-AE)

Features represented by the output weights  of 
ELM-AE of MNIST OCR Datasets (with 60000 
training samples and 10000 testing samples)
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ELM as Auto-Encoder (ELM-AE)

ELM-AE vs. singular value decomposition. (a) The output weights ࢼ of ELM-AE and (b) rank 20 
SVD basis shows the feature representation of each number (0–9) in the MNIST dataset.

(a) ELM (b) SVD
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ELM as Auto-Encoder (ELM-AE)

ELM-AE based multi-Layer ELM (ML-ELM): Different from Deep Learning, no iteration is 
required in tuning the entire multi-layer feedforward networks
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ELM vs Deep Learning

Learning Methods Testing 
Accuracy 

Training Time

H-ELM [Chenwei Deng, et al, 2015] 99.14 281.37s

Multi-Layer ELM (784-700-
700-15000-10) [Huang, et al 2013]

99.03േ૙. ૙૝ 444.7s

Deep Belief Networks (DBN)
(748-500-500-2000-10)

98.87 20580s 
(5.7 hours)

Deep Boltzmann Machines 
(DBM) (784-500-1000-10)

99.05 68246s 
(19 hours)

Stacked Auto Encoders (SAE) 98.6 > 17 hours

Stacked Denoising Auto 
Encoders (SDAE) 

98.72 > 17 hours

[Huang, et al 2013]

0

10000

20000

30000

40000

50000

60000

70000

80000

ELM DBN DBM
Training time (s)

Significant training time gap

L. L. C. Kasun, et al, “Representational Learning with Extreme Learning Machine for Big Data,” IEEE Intelligent Systems, vol. 28, 
no. 6, pp. 31-34, 2013.
J. Tang, et al, “Extreme Learning Machine for Multilayer Perceptron,” (in press) IEEE Transactions on Neural Networks and 
Learning Systems, 2015. 
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Human Action Recognition
Methods ELM 

Based 
Tensor canonical 
correlation

Tangent bundles on 
special manifolds

Accuracies 99.4 85 93.4
[Deng, et al 2015]

Feature 
extraction (PCA, 

etc)

Classifier (SVM, 
etc)

Feature Learning 
by ELM Auto-

Encoder

ELM as  
Classifier

Conventional: Heterogeneous combinations

Conventional: Homogeneous combinations
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Target Tracking

OS-ELMUpdating

Frame (n) Sampling Feature Extraction
(Multilayer Encoding) Online Sequential Updating

Frame (n+1)

Circle
Sampling

Classication
(OS-ELM)

Feature Dector
(ELM autoencoder)

Auto-adaptive Detection System Tracking Result

J. Xiong, et al, “Extreme Learning Machine for Multilayer Perceptron”, IEEE Transactions on Neural Networks and Learning 
Systems, 2015.
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Target Tracking

J. Xiong, et al, “Extreme Learning Machine for Multilayer Perceptron”, IEEE Transactions on Neural Networks and Learning 
Systems, 2015.

ELM

Compressive Tracking (CT)

Stacked Autoencoder (SDA)

ELM

Compressive Tracking (CT)

Stacked Autoencoder (SDA)
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Target Tracking

Comparison of tracking location error using H-ELM, CT, and SDA on different data sets. (a) David Indoor. (b) Trellis
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Car Detection

Sliding Sampling

Extracted Window
(40 by 100 pixels)

Network Input Hidden Units Output

Detected Result

Normalized and 
Histogram Equalized

Image Preparation Detection Network

Methods ELM 
Based 

Contour based 
learning

SDA

Accuracies 95.5 92.8 93.3

Time 46.78 s 3262.30 s
[Deng, et al 2014]

J. Xiong, et al, “Extreme Learning Machine for Multilayer Perceptron”, IEEE Transactions on Neural Networks and Learning 
Systems, 2015.
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ELM vs Deep Learning

Princeton/MIT/CUHK’s 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction
[Wu, et al 2014]

Learning Methods Testing Accuracy Training Time
ELM-AE 86.45 602s

3D ShapeNets (Convolutional Deep Belief Network) 86.5 Two days

[Kai XU, Zhige XIE, NUDT, personal communication 2014]
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ELM Theory on Local Receptive Fields 
and Super Nodes

d Input Nodes L Hidden Nodes m Output Nodes

ELM Feature Mapping
/ ELM Feature Space
(without tuning hidden nodes)

ELM Learning
(minimal norm of output weights)

Random hidden node 
(random hidden parameters)

Random connections
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ELM Theory on Local Receptive Fields 
and Super Nodes

(Super) Hidden Node i

Local Receptive Field

Feature Map k

Pooling
Size

Random Input 
Weights Vector  

ak

Pooling Map kInput Layer

i

Convolutional nodes and pooling are one of local 
receptive fields in ELM, but there may have many 
more.

Similar to sigmoid nodes in feedforward networks, 
RBF nodes in RBF networks, etc, convolutional 
nodes in CNN can be considered one type of 
nonlinear piecewise hidden nodes used in ELM



73

ELM Theory on Local Receptive 
Fields and Super Nodes

• Learned from Jürgen Schmidhuber and Dong Yu in 
INNS BigData, San Francisoc, August 10-12, 2015, and 
Deep Learning in wiki
– First Deep NNs: Ivakhnenko, et al, 1965

– Basic CNN: Fukushima 1979

– Back propagation applied to CNNs: LeCun, et al, 1989

• Mainly on MNIST OCR, but need to spend 3 days

– Max-Pooling: Weng 1992

• ELM learning algorithms can also be applied to CNN so 
that tuning hidden neurons are not required, and 
meanwhile ELM naturally provides theoretical support 
to and underpin CNN and Max-Pooling. [Huang, et al, 2007, 2015]

G.-B. Huang and L. Chen, “Convex Incremental Extreme Learning Machine,” Neurocomputing, vol. 70, pp. 3056-3062, 2007.
G.-B. Huang, et al, “Local Receptive Fields Based Extreme Learning Machine,” IEEE Computational Intelligence Magazine, vol. 
10, no. 2, pp. 18-29, 2015.
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ELM vs Deep Learning

Training time in 
NORB Data

DBN ELM

13 h 0.1h

Learning Methods Testing 
Accuracy 

ELM 97.3%

Tiled Convolutional Neural Nets 96.1%

Convolutional Neural Nets 94.4%

3D DBNs 93.5%

DBMs 92.8%

SVMs 88.4%
NORB Dataset

G.-B. Huang, et al, “Local Receptive Fields Based Extreme Learning Machine,” IEEE Computational Intelligence Magazine, 
vol. 10, no. 2, pp. 18-29, 2015. 
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ELM vs Deep Learning

Learning Methods Testing 
Error Rate

ELM 0.02%
Convolutional Neural Nets 
(CNN)

28.51%

CNN+video (test images of 
COIL)

7.75%

CNN++video (COIL-like 
images)

20.23%

COIL Dataset: 1800 training samples, 5400 
testing samples, 100 categories

Z. Bai, et al, “Generic Object Recognition with Local Receptive Fields Based Extreme Learning Machine,” 2015 INNS 
Conference on Big Data, San Francisco, August 8-10, 2015. 
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ELM Slices

d Input Nodes ELM Feature m Output Nodes

ELM Feature Mapping ELM Learning

ELM Feature

ELM Featured Input Nodes
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Speech Emotion Recognition (DNN + 
ELM)

Microsoft Research and Ohio State University [Han, et al 2014]
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Traffic Sign Recognition (DNN + ELM)

Methods CNN + ELM Based MCDNN
Accuracies 99.48% 99.46%

Training time 5 hours (regular PC) 37 hours (GPU 
Implementation)

(ELM may just spend several minutes on training in order to reach 98+% accuracy) [Xu, et al 
2015]
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ELM, SVM and Deep Learning

d Input Nodes m Output Nodes

d Input Nodes

߮ሺ࢞ሻ

Unknown features in each layer

Binary Output

(a) SVM

(b) Deep Learning
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ELM, SVM and Deep Learning
(a) ELM

(b) ELM subnetwork

1 d

1 L

1 i L

jx

Feature learning
Clustering
Regression
Classification

Hidden nodes need not be tuned. A hidden node 
can be a subnetwork of several nodes.

Problem based 
optimization constraints

i

d Input Nodes m Output NodesELM Feature Space ELM Feature Space

Different from Deep Learning, All the hidden neurons in ELM as 
a whole are not required to be iteratively tuned
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ELM and Deep Learning

Deep Learning ELMs
Very sensitive to network size, “painful” 
manually tuning

Stable in a wide range of network size, almost free
of human intervention

Difficult in parallel and hardware implementation Easy in parallel and hardware implementation

Lack of theoretical proof Rigorously proved in theory

Different models for feature learning, clustering, 
and classifications

Homogenous models for compression, feature 
learning, clustering, regression and classification

Impossible for micro level real-time learning and 
control; huge training time is required; difficult 
for multi-channel data fusion and decision 
synchronization

Easy for micro level real-time learning and control, 
up to thousands times faster, efficient for multi-
channel data fusion and potential for decision 
synchronization

Difficult for online incremental learning and 
prediction (stream data learning)

Easy for online incremental learning and prediction 
(streaming data learning)

Only reaching higher accuracy when data is large 
enough

Reaching higher accuracy in full spectrum of 
applications, from sparse/small data to large size 
of applications

Impossible to have hardware designed for 
universal development

“Brains (devised by ELM)” can be generated before 
applications are present

Huge computing resources required (GPU 
required, up to tens of thousands of cores 
required)

Usually implemented in regular PCs / Laptops / 
FPGA / Chip; The training time would 
significantly be reduced if multi cores are used.
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ELM as Fundamentals of Cognition and 
Reasoning

Compression

Feature 
Learning

Clustering

Regression

Classification
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?

ELM Filling Gaps …

Baum
(1988)

QuickNet
(1989)

Schmidt, 
et al

(1992)

RVFL
(1994)

LS-SVM
(1999)

PSVM
(2001)

Random 
Projection

(1998)

PCA
(1901)

Rosenblatt 
Perceptron

(1958)

SVM
(1995)

Biological 
learning

?
?

Feature space methods

Neural network methods
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ELM Filling Gaps …

Baum
(1988)

QuickNet
(1989)

Schmidt, et al
(1992)

RVFL
(1994)

LS-SVM
(1999)

PSVM
(2001)

Random 
Projection

(1998)

PCA
(1901)

ELMs

+: G
eneral type of neurons

+: generalization theory
-: R

em
ove  direct links from

  the
input nodes to output nodes

Before ELM theory, for these methods:
1) Universal approximation capability was not 

proved for full random hidden nodes case
2) Separation capability was not proved.
3) Optimization constraints were not used.
4) Dimensionality of hidden maps  is usually 

lower than number of training data

+: random
features

-: bias b

+: 
1) Extend to almost any nonlinear piecewise continuous activation functions (even 

unknown shapes and modeling including biological neurons) 
2) Extend to kernels and high dimensionality of hidden mappings cases
3) Prove the universal approximation and separation capability of “generalized ” SLFNs.
4) Build the link among ridge regression, system stability, neural network generation 

theory, maximal margin, and optimization constraints on network parameters in ELM 
framework

5) Prove that hidden node parameters can be independent of training data
6) Prove that random hidden neurons are linearly independent
7) Use generalization theory for learning optimization
-:
1) Use standard SLFNs instead of RVFL and QuickNet
2) Remove bias in the output nodes, which are contradictory to biological systems

Rosenblatt 
Perceptron

(1958)

SVM
(1995)

Before ELM theory, for these feature space 
methods:
1) Universal approximation capability may 

not have been proved.
2) Relationship with neural networks is not 

very clear.

ELM aims to address the open problems: 
1) Can learning be made without iteratively 

tuning hidden neurons even when the shapes 
and modeling of hidden neuron output 
functions are unknown?

2) Does there exist unified frameworks for 
feedforward neural networks and feature 
space methods?

Biological 
learning

+:
1) Random neurons (even with 

unknown shapes / modeling)
2) Kernels
3) Optimization constraints

ELM is efficient in: 
1) Regression
2) Classification
3) Clustering
4) Feature learning
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ELM Filling Gaps …
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Towards Biological Learning, Cognition 
and Reasoning?
Biological Learning ELMs
Stable in a wide range (tens to thousands of neurons 
in each module)

Stable in a wide range (tens to thousands of 
neurons in each module)

Parallel implementation Easy in parallel implementation

“Biological” implementation Much easier in hardware implementation

Free of user specified parameters Least human intervention

One module possibly for several types of applications One network type for different applications

Fast in micro learning point Fast in micro learning point

Nature in online sequential learning Easy in online sequential learning

Fast speed and high accuracy Fast speed and high accuracy

Brains are built before applications “Brains (devised by ELM)” can be generated 
before applications are present



87

• J. von Neumann, Father of Computers’ Puzzles 
[Neumann 1951, 1956]

– Why ``an imperfect (biological) neural network, 
containing many random connections, can be made to 
perform reliably those functions which might be 
represented by idealized wiring diagrams” [Rosenblatt 1958]

Biological Learning vs Computers

• 60 Years Later …

• Answered by ELM Learning Theory[Huang, et al 2006, 2007, 2008]

– “As long as the output functions of hidden neurons are nonlinear 
piecewise continuous and even if their shapes and modeling are 
unknown, (biological) neural networks with random hidden neurons 
attain both universal approximation and classification capabilities, 
and the changes in finite number of hidden neurons and their 
related connections do not affect the overall performance of the 
networks.” [Huang 2014]
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Biological Learning vs Computers

• ELM Learning Theory[Huang, et al 2006, 2007, 2008, 2014, 2015]

– ELM can be used to train wide type of multi hidden layer of 
feedforward networks: 

• Each hidden layer can be trained by one single ELM based on its role as 
feature learning, clustering, regression or classification. 

• Entire network as a whole can be considered as a single ELM in which 
hidden neurons need not be tuned. 

– ELM slice can be ``inserted” into many local parts of a multi hidden 
layer feedforward network, or work together with other learning 
architectures / models.

– A hidden node in an ELM slice (a ``generalized” SLFN) can be a 
network of several nodes, thus local receptive fields can be formed.

– In each hidden layer, input layers to hidden nodes can be fully or 
partially randomly connected according to different continuous 
probability distribution function.
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Biological Learning vs Computers

• ELM Learning Theory[Huang, et al 2006, 2007, 2008, 2014, 2015]

– From ELM theories point of view, the entire multi layers of 
networks are structured and ordered, but they may be seemingly 
``messy” and ``unstructured” in a particular layer or neuron slice. 
``Hard wiring” can be randomly built locally with full connection or 
partial connections.

– Co-existence of globally structured architectures and locally random 
hidden neurons happen to have fundamental learning capabilities 
of compression, feature learning, clustering, regression and 
classification. 

– Biological learning mechanisms are sophisticated, we believe that 
``learning without tuning hidden neurons” is one of fundamental 
biological learning mechanisms in many modules of learning 
systems. Furthermore, random hidden neurons and ``random wiring”
are only two specific implementations of such ``learning without 
tuning hidden neurons” learning mechanisms.
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Things

(eg. Intelligent engine, 
intelligent devices, intelligent 
sensors, intelligent cameras, 

etc)
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Society of Intelligent Things
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Three Stages of Intelligent Things
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Conventional Approximation Capability Theory

Figure 1: Feedforward Network Architecture.

Conventional Existence Theorem

1 Any continuous target function f (x) can
be approximated by SLFNs with some
kind of hidden nodes and with
appropriate values for learning
parameters (hidden node parameters
(ai, bi)) and output weights βi.

2 In other words, given any small positive
value ε, for sigmoid type or RBF type of
SLFNs, there exist a set of hidden node
parameters (ai, bi) and appropriate
number (L) of hidden nodes such that

‖fL(x)− f (x)‖ < ε (1)

M. Leshno, et al., “Multilayer feedforward networks with a nonpolynomial activation function can approximate any

function,” Neural Networks, vol. 6, pp. 861-867, 1993.

J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Computation, vol.

3, pp. 246-257, 1991.
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ELM Learning Theory

Figure 2: Feedforward Network Architecture: any type of nonlinear
piecewise continuous G(ai, bi, x).

New Learning Theory

Given a SLFN with any nonconstant piecewise continuous
hidden nodes G(x, a, b), if
span{G(x, a, b) : (a, b) ∈ Cd × C} is dense in L2, for any
given positive value ε, for any continuous target function f
and any randomly generated sequence {(an, bn)

L
n=1},

there exists an integer L0 > 0 such that when L > L0

‚‚‚‚‚‚f (x)−
LX

n=1

βngn

‚‚‚‚‚‚ < ε (2)

holds with probability one if βn =

D
en−1,gn

E
‖gn‖2 ,

gn = G(an, bn, x), i = 1, · · · , L.

G.-B. Huang, et al., “Universal approximation using incremental constructive feedforward networks with random

hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.

G.-B. Huang, et al., “Convex incremental learning machine,” Neurocomputing, vol. 70, pp. 3056-3062, 2007.
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ELM Learning Theory

Figure 3: Feedforward Network Architecture: any type of
nonlinear piecewise continuous G(ai, bi, x).

New Learning Theory

1 Given a SLFN with a type of nonconstant piecewise
continuous hidden nodes G(x, a, b), if any continuous
target function f (x) can be approximated by such
SLFNs with appropriate hidden node parameters, then
there is no need to find an algorithm to tune the hidden
node parameters.

2 Instead, given any positive value ε, for any continuous
target function f and any randomly generated sequence
{(ai, bi)

L
i=1}, there exists an integer L0 > 0 such that

when L > L0,
‚‚‚f (x)−

PL
n=1 βngn

‚‚‚ < ε holds with

probability one if βn =

D
en−1,gn

E
‖gn‖2 , gn = G(an, bn, x),

i = 1, · · · , L.

3 Thus, for basic ELM with the fixed network architecture
and L random hidden nodes,
limL→+∞

‚‚‚f (x)−
PL

i=1 βigi

‚‚‚ = 0 where the output
weights βi ’s are determined by ordinary least square.

Essence of ELM

Hidden node parameters (ai, bi)
L
i=1 are not only independent of

target functions f (x) but also of training samples.
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Differences Between ELM and Semi-Random Methods

Difference Between ELM and Baum’s Work

1 Baum (1988): (seen from simulations) one may fix the weights of the
connections on one level and simply adjust the connections on the other level
and no (significant) gain is possible by using an algorithm able to adjust the
weights on both levels simultaneously.

2 However, Baum did not discuss whether all the hidden node biases bi should be
set with the same value. Baum did not discuss either whether the hidden node
biases bi should be tuned or not. ELM theory states that the hidden node
parameters are independent of the training data, which was not found in Baum
(1988).

3 Baum (1988) did not study RBF network and kernel learning, while ELM work for
all these cases.

4 Baum (1988) did not give any theoretical analysis, let alone the proof of universal
approximation capability of ELM.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.
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Differences Between ELM and Semi-Random Methods

Difference Between ELM and RBF Networks

1 The conventional RBF network (Lowe 1988,Lowe 1989): focus on a specific RBF
network with the same impact factor b assigned to all the RBF hidden nodes:
fn(x) =

Pn
i=1 βig(b‖x − ai‖), where the centers ai can be randomly selected

from the training data instead of tuning, but the impact factor bi of RBF hidden
nodes is not randomly selected and usually determined by users. One of RBF
networks interested by ELM is fn(x) =

Pn
i=1 βig(bi‖x − ai‖) where the RBF

hidden nodes are not requested to have the same impact factors bi.
2 RBF networks fn(x) =

Pn
i=1 βig(b‖x − ai‖) (studied by Lowe 1988,Lowe 1989)

with randomly generated centers ai and randomly generated same values of
impact factors b in fact does not generally have the universal approximation
capability, in contrast, RBF networks fn(x) =

Pn
i=1 βig(bi‖x − ai‖) (in ELM) with

randomly generated centers ai and randomly generated impact factors bi (with
different values) does generally have the universal approximation capability.

3 ELM works for different type of hidden nodes including different type of RBF
nodes (not limited to g(b‖x − ai‖)), additive nodes, kernels, etc while
conventional RBF networks (Lowe1988,Lowe1989) only work for specific type of
RBF networks with single impact factor value for all RBF nodes.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.
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Differences Between ELM and Semi-Random Methods

Difference Between ELM and RVFL

1 In a random vector version of the functional-link (RVFL) model (Igelnik 1995), the
input weights ai are “uniformly” drawn from a probabilistic space
Vd

α = [0, αΩ] × [−αΩ, αΩ]d−1 (d: the input dimension). The hidden node biases
bi depend on the weights ai and some other parameters yi and ui:
bi = −(αai · yi + ui), where yi and ui are randomly generated from [0, 1]d and
[−2Ω, 2Ω]. α and Ω have to be determined in the learning stage and depends on
the training data distribution.

2 In ELM, the hidden node parameters (ai, bi) are not only independent of the
training data but also of each other.

3 In ELM, ai’s and bi’s are independent of each other.

G.-B. Huang, et al., “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol.

71, pp. 576-583, 2008.
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Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N}, hidden node output
function G(a, b, x), maximum node number Lmax and expected learning accuracy ε,

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .
2 Learning step:

while L < Lmax and ‖E‖ > ε
- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (aL, bL) for new hidden node L.

- Calculate the output weight βL for the new hidden node: βL =
E·HT

L
HL·HT

L
≈

D
eL−1,gL

E
‖gL‖2

- Calculate the residual error after adding the new hidden node L: E = E − βL · HL

endwhile

where HL = [h(1), · · · , h(N)]T is the activation vector of the new node L for all the N

training samples and E = [e(1), · · · , e(N)]T is the residual vector. E · HT
L ≈ 〈eL−1, gL〉

and HL · HT
L ≈ ‖gL‖2.
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Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N}, hidden node output
function G(a, b, x), maximum node number Lmax and expected learning accuracy ε,

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .
2 Learning step:

while L < Lmax and ‖E‖ > ε
- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (aL, bL) for new hidden node L.

- Calculate the output weight βL for the new hidden node: βL =
E·HT

L
HL·HT

L
≈

D
eL−1,gL

E
‖gL‖2

- Calculate the residual error after adding the new hidden node L: E = E − βL · HL

endwhile

where HL = [h(1), · · · , h(N)]T is the activation vector of the new node L for all the N

training samples and E = [e(1), · · · , e(N)]T is the residual vector. E · HT
L ≈ 〈eL−1, gL〉

and HL · HT
L ≈ ‖gL‖2.

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N}, hidden node output
function G(a, b, x), maximum node number Lmax and expected learning accuracy ε,

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .
2 Learning step:

while L < Lmax and ‖E‖ > ε
- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (aL, bL) for new hidden node L.

- Calculate the output weight βL for the new hidden node: βL =
E·HT

L
HL·HT

L
≈

D
eL−1,gL

E
‖gL‖2

- Calculate the residual error after adding the new hidden node L: E = E − βL · HL

endwhile

where HL = [h(1), · · · , h(N)]T is the activation vector of the new node L for all the N

training samples and E = [e(1), · · · , e(N)]T is the residual vector. E · HT
L ≈ 〈eL−1, gL〉

and HL · HT
L ≈ ‖gL‖2.

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N}, hidden node output
function G(a, b, x), maximum node number Lmax and expected learning accuracy ε,

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .
2 Learning step:

while L < Lmax and ‖E‖ > ε
- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (aL, bL) for new hidden node L.

- Calculate the output weight βL for the new hidden node: βL =
E·HT

L
HL·HT

L
≈

D
eL−1,gL

E
‖gL‖2

- Calculate the residual error after adding the new hidden node L: E = E − βL · HL

endwhile

where HL = [h(1), · · · , h(N)]T is the activation vector of the new node L for all the N

training samples and E = [e(1), · · · , e(N)]T is the residual vector. E · HT
L ≈ 〈eL−1, gL〉

and HL · HT
L ≈ ‖gL‖2.

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N}, hidden node output
function G(a, b, x), maximum node number Lmax and expected learning accuracy ε,

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .
2 Learning step:

while L < Lmax and ‖E‖ > ε
- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (aL, bL) for new hidden node L.

- Calculate the output weight βL for the new hidden node: βL =
E·HT

L
HL·HT

L
≈

D
eL−1,gL

E
‖gL‖2

- Calculate the residual error after adding the new hidden node L: E = E − βL · HL

endwhile

where HL = [h(1), · · · , h(N)]T is the activation vector of the new node L for all the N

training samples and E = [e(1), · · · , e(N)]T is the residual vector. E · HT
L ≈ 〈eL−1, gL〉

and HL · HT
L ≈ ‖gL‖2.

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Incremental Extreme Learning Machine (I-ELM)

I-ELM

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N}, hidden node output
function G(a, b, x), maximum node number Lmax and expected learning accuracy ε,

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .
2 Learning step:

while L < Lmax and ‖E‖ > ε
- Increase by 1 the number of hidden nodes L: L = L + 1.
- Assign random hidden node parameter (aL, bL) for new hidden node L.

- Calculate the output weight βL for the new hidden node: βL =
E·HT

L
HL·HT

L
≈

D
eL−1,gL

E
‖gL‖2

- Calculate the residual error after adding the new hidden node L: E = E − βL · HL

endwhile

where HL = [h(1), · · · , h(N)]T is the activation vector of the new node L for all the N

training samples and E = [e(1), · · · , e(N)]T is the residual vector. E · HT
L ≈ 〈eL−1, gL〉

and HL · HT
L ≈ ‖gL‖2.

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Performance of I-ELM with RBF hidden nodes

Figure 4: Average testing RMSE
Figure 5: Average training time (seconds)

G.-B. Huang, et al., “Universal approximation using incremental constructive feedforward networks with random

hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
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Real-World Regression Problems

Problems I-ELM RAN MRAN
Sigmoid RBF Sin

Abalone 0.0920 0.0938 0.0886 0.1183 0.0906
Auto Price 0.0977 0.1261 0.1162 0.1418 0.1373

Boston Housing 0.1167 0.1320 0.1404 0.1474 0.1321
California Housing 0.1683 0.1731 0.1550 0.1506 0.1480
Census (House8L) 0.0923 0.0922 0.0842 0.1061 0.0903

Delta Ailerons 0.0525 0.0632 0.0635 0.1018 0.0618
Delta Elevators 0.0740 0.0790 0.0739 0.1322 0.0807
Machine CPU 0.0504 0.0674 0.0665 0.1069 0.1068

Table 1: Average testing RMSE of different algorithms. (I-ELM with 200 hidden nodes)
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Real-World Regression Problems

Problems I-ELM RAN MRAN
Sigmoid RBF Sin

Abalone 0.0046 0.0053 0.0049 0.0076 0.0065
Auto Price 0.0069 0.0255 0.0179 0.0261 0.0381

Boston Housing 0.0112 0.0126 0.0114 0.0177 0.0140
California Housing 0.0049 0.0081 0.0052 0.0035 0.0030
Census (House8L) 0.0023 0.0029 0.0015 0.0038 0.0042

Delta Ailerons 0.0078 0.0116 0.0090 0.0083 0.0050
Delta Elevators 0.0126 0.0123 0.0065 0.0130 0.0068
Machine CPU 0.0079 0.0177 0.0278 0.0246 0.0367

Table 2: Standard deviations (Dev) of testing RMSE of different algorithms. (I-ELM with 200 hidden nodes)
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Real-World Regression Problems

Problems Training time of I-ELM Training Time # nodes
Sigmoid RBF Sin RAN MRAN RAN MRAN

Abalone 0.2214 0.5030 0.1778 39.928 255.84 186.3 67.7
Auto Price 0.0329 0.0468 0.0188 0.3565 2.5015 23.8 22.5

Boston Housing 0.0515 0.0657 0.0470 2.0940 22.767 40.5 36.2
California Housing 0.5448 1.3656 0.3872 3301.7 2701.1 4883.0 93.0
Census (House8L) 0.8667 1.7928 0.5194 5399.0 3805.3 6393.2 77.3

Delta Ailerons 0.2620 0.4327 0.1715 237.96 175.07 1118.1 76.6
Delta Elevators 0.2708 0.6321 0.2261 661.78 331.75 2417.4 76.8
Machine CPU 0.0234 0.0447 0.0297 0.1735 0.2454 6.9 7.0

Table 3: Training time (seconds) and network complexity comparison of different algorithms
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Real-World Regression Problems

Problems I-ELM SGBP (λ = 1) SVR
Mean Dev Mean Dev Mean Dev

Abalone 0.0878 0.0032 0.1175 0.0095 0.0846 0.0013
Auto Price 0.0883 0.0036 0.2383 0.0587 0.1052 0.0040

Boston Housing 0.1095 0.0090 0.1882 0.0243 0.1155 0.0079
California Housing 0.1555 0.0021 0.1579 0.0033 0.1311 0.0011
Census (House8L) 0.0871 0.0021 0.0866 0.0025 0.0683 0.0013

Delta Ailerons 0.0472 0.0049 0.0459 0.0033 0.0467 0.0010
Delta Elevators 0.0639 0.0067 0.0653 0.0019 0.0603 0.0005
Machine CPU 0.0491 0.0089 0.1988 0.0429 0.0620 0.0180

Table 4: Performance comparison (testing RMSE and the corresponding standard deviation) of I-ELM (with 500
random sigmoid hidden nodes), stochastic gradient descent BP (SGBP), and SVR.
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Real-World Regression Problems

Problems I-ELMa SGBPa (λ = 1) SVRb

Time (s) Time (s) # Nodes Time (s) # SVs (C, γ)

Abalone 0.5560 0.4406 10 1.6123 309.84 (24, 2−6)

Auto Price 0.0954 0.0154 15 0.0042 21.25 (28, 2−5)

Boston Housing 0.1419 0.0579 10 0.0494 46.44 (24, 2−3)

California Housing 1.3763 2.0307 10 74.184 2189.2 (23, 21)

Census (House8L) 1.7295 2.7814 30 11.251 810.24 (21, 2−1)

Delta Ailerons 0.7058 0.6610 10 0.6726 82.44 (23, 2−3)

Delta Elevators 0.7296 0.8830 10 1.1210 260.38 (20, 2−2)

Machine CPU 0.0765 0.0206 10 0.0018 7.8 (26, 2−4)
a run in MATLAB environment. b run in C executable environment.

Table 5: Performance comparison (training time (seconds)) of I-ELM (with 500 random sigmoid hidden nodes),
stochastic gradient descent BP (SGBP), and SVR.
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Real-World Regression Problems

Problems Testing RMSE Dev of Testing RMSE Training Time (s)
I-ELM SGBP I-ELM SGBP I-ELM SGBP

(Threshold) (λ = 10) (Threshold) (λ = 10) (Threshold) (λ = 10)
Abalone 0.0951 0.1332 0.0142 0.0102 0.2908 0.4313

Auto Price 0.1141 0.3209 0.0130 0.0665 0.0735 0.0172
Boston Housing 0.1346 0.2196 0.0104 0.0279 0.0907 0.0548

California Housing 0.1828 0.1806 0.0179 0.0226 0.8186 1.9548
Census (House8L) 0.0941 0.1032 0.0062 0.0068 1.0117 2.7359

Delta Ailerons 0.0790 0.0400 0.0397 0.0055 0.3550 0.6375
Delta Elevators 0.0713 0.0895 0.0110 0.0090 0.5102 0.8970
Machine CPU 0.0739 0.2281 0.0140 0.0479 0.0658 0.0215

Table 6: Performance comparison between the approximated threshold network (λ = 10) trained by stochastic
gradient descent BP (SGBP) and the true threshold networks trained by I-ELM with 500 threshold nodes:
g(x) = −1x<0 + 1x≥0.
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Enhanced Incremental ELM (EI-ELM)

New Convergence Theorem

Given a SLFN with any nonconstant piecewise continuous hidden nodes G(x, a, b), if
span{G(x, a, b) : (a, b) ∈ Cd × C} is dense in L2, for any continuous target function f
and any randomly generated function sequence {gn} and any positive integer k,
limn→∞ ‖f − f ∗n ‖ = 0 holds with probability one if

β∗n =

D
e∗n−1, g∗n

E
‖g∗n ‖2

(3)

where f ∗n =
Pn

i=1 β∗i g∗i , e∗n = f − f ∗n and
g∗n = {gi|min(n−1)k+1≤i≤nk ‖(f − f ∗n−1) − βngi‖}.

G.-B. Huang and L. Chen, “Enhanced random search based incremental extreme learning machine,”

Neurocomputing, vol. 71, pp. 3460-3468, 2008.
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Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Enhanced Incremental ELM (EI-ELM)

EI-ELM Algorithm

1 Initialization: Let L = 0 and residual error E = t, where t = [t1, · · · , tN ]T .

2 Learning step:

while L < Lmax and ‖E‖ > ε

+ Increase by 1 the number of hidden nodes L: L = L + 1.

+ for i = 1 : k

- Assign random parameters (a(i), b(i)) for the new hidden node L according to any continuous
sampling distribution probability.

- Calculate the output weight β(i) for the new hidden node: β(i) =
E·HT

(i)
H(i)·H

T
(i)

- Calculate the residual error after adding the new hidden node L: E(i) = E − β(i) · H(i)

endfor

+ Let i∗ = {i|min1≤i≤k ‖E(i)‖}. Set E = E(i), aL = a(i∗), bL = b(i∗), and βL = β(i∗).

endwhile

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Figure 6: The testing error updating curves of EI-ELM and I-ELM
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Figure 7: Testing RMSE performance comparison between EI-ELM and I-ELM (with Sigmoid hidden nodes) for
Abalone case
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Figure 8: Testing RMSE updating progress with new hidden nodes added and different number of selecting trials k in
Airplane case

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Real-World Regression Problems

Problems EI-ELM (50 Sigmoid hidden nodes) I-ELM (500 Sigmoid
k = 10 k = 20 hidden nodes, k = 1)

Mean Dev Mean Dev Mean Dev

Abalone 0.0878 0.0033 0.0876 0.0015 0.0876 0.0033
Ailerons 0.0640 0.0066 0.0571 0.0022 0.0824 0.0232
Airplane 0.0922 0.0061 0.0862 0.0040 0.0898 0.0067

Auto Price 0.0924 0.0112 0.0897 0.0104 0.0948 0.0158
Bank 0.1066 0.0058 0.0896 0.0036 0.0757 0.0032

Boston 0.1133 0.0101 0.1102 0.0061 0.1084 0.0096
California 0.1591 0.0034 0.1548 0.0033 0.1543 0.0019

Census (8L) 0.0899 0.0017 0.0865 0.0011 0.0871 0.0018
Computer Activity 0.1075 0.0057 0.0991 0.0036 0.1057 0.0078

Delta Ailerons 0.0474 0.0062 0.0467 0.0042 0.0468 0.0052
Delta Elevators 0.0615 0.0049 0.0586 0.0038 0.0640 0.0055

Kinematics 0.1420 0.0029 0.1416 0.0019 0.1406 0.0014
Machine CPU 0.0498 0.0155 0.0467 0.0148 0.0474 0.0040

Puma 0.1846 0.0018 0.1827 0.0017 0.1856 0.0039
Pyrim 0.1514 0.0419 0.1300 0.0405 0.1712 0.0626
Servo 0.1634 0.0129 0.1558 0.0121 0.1589 0.0124

Table 7: Performance comparison between EI-ELM with 50 Sigmoid hidden nodes and I-ELM with 500 Sigmoid
hidden nodes
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Real-World Regression Problems

Problems EI-ELM (50 RBF hidden nodes) I-ELM (500 RBF
k = 10 k = 20 hidden nodes, k = 1)

Mean Dev Mean Dev Mean Dev

Abalone 0.0907 0.0034 0.0871 0.0023 0.0872 0.0022
Ailerons 0.0973 0.0229 0.0775 0.0033 0.1129 0.0295
Airplane 0.0943 0.0168 0.0813 0.0102 0.0772 0.0082

Auto Price 0.1187 0.0159 0.1104 0.0148 0.1231 0.0133
Bank 0.0989 0.0031 0.0888 0.0023 0.0843 0.0058

Boston 0.1197 0.0107 0.1171 0.0078 0.1214 0.0103
California 0.1624 0.0049 0.1579 0.0027 0.1582 0.0027

Census (8L) 0.0864 0.0026 0.0846 0.0020 0.0860 0.0018
Computer Activity 0.1295 0.0068 0.1201 0.0024 0.1358 0.0177

Delta Ailerons 0.0469 0.0067 0.0466 0.0039 0.0544 0.0076
Delta Elevators 0.0603 0.0049 0.0602 0.0039 0.0685 0.0099

Kinematics 0.1346 0.0025 0.1306 0.0019 0.1425 0.0095
Machine CPU 0.0622 0.0281 0.0511 0.0114 0.0614 0.0274

Puma 0.1789 0.0020 0.1770 0.0012 0.1850 0.0119
Pyrim 0.1214 0.0345 0.0989 0.0286 0.2179 0.1545
Servo 0.1487 0.0133 0.1434 0.0120 0.1410 0.0151

Table 8: Performance comparison between EI-ELM with 50 RBF hidden nodes and I-ELM with 500 RBF hidden
nodes

ELM Web Portal: www.extreme-learning-machines.org Part III of III: ELM Theories, Incremental/Sequential ELM



tu-logo

ur-logo

ELM Theory I-ELM EI-ELM OS-ELM

Nature of Sequential Learning

Natural Learning

1 The training observations are sequentially (one-by-one or
chunk-by-chunk with varying or fixed chunk length) presented to the
learning algorithm/system.

2 At any time, only the newly arrived single or chunk of observations
(instead of the entire past data) are seen and learned.

3 A single or a chunk of training observations is discarded as soon as the
learning procedure for that particular (single or chunk of) observation(s)
is completed.

4 The learning algorithm/system has no prior knowledge as to how many
training observations will be presented.

G.-B. Huang, et al., “A generalized growing and pruning RBF (GGAP-RBF) neural network for function

approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 57–67, 2005.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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Popular Sequential Learning Methods

RAN Based

1 RAN, MRAN, GAP-RBF, GGAP-RBF
2 At any time, only the newly arrived single observation is seen and learned
3 They do not handle chunks of training observations
4 Many control parameters need to be fixed by human. Very laborious! Very

tedious!
5 Training time is usually huge!!
6 Many control parameters need to be fixed by human

BP Based

1 Stochastic gradient BP (SGBP)
2 It may handle chunks of training observations
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Online Sequential ELM (OS-ELM)

Two-Step Learning Model

1 Initialization phase: where batch ELM is used to initialize the learning system.
2 Sequential learning phase: where recursive least square (RLS) method is

adopted to update the learning system sequentially.

N.-Y. Liang, et al., “A fast and accurate on-line sequential learning algorithm for feedforward networks”, IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
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Online Sequential ELM (OS-ELM)

∥∥∥∥[
H0
H1

]
β −

[
T0
T1

]∥∥∥∥ (4)

β(1) = K−1
1

[
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]
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1 (K1β
(0) −HT
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where β(1) is the output weight for all the data learned so far,

K1 =
[

H0
H1

]T [
H0
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]
= K0+HT

1 H1, K0 = HT
0 H0, β(0) = K−1
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Real-World Regression Problems

Datasets Algorithms Time RMSE # nodes
(seconds) Training Testing

OS-ELM (Sigmoid) 0.0444 0.0680 0.0745 25
OS-ELM (RBF) 0.0915 0.0696 0.0759 25
Stochastic BP 0.0875 0.1112 0.1028 13

Auto-MPG GAP-RBF 0.4520 0.1144 0.1404 3.12
MRAN 1.4644 0.1086 0.1376 4.46

OS-ELM (Sigmoid) 0.5900 0.0754 0.0777 25
OS-ELM (RBF) 1.2478 0.0759 0.0783 25
Stochastic BP 0.7472 0.0996 0.0972 11

Abalone GAP-RBF 83.784 0.0963 0.0966 23.62
MRAN 1500.4 0.0836 0.0837 87.571

OS-ELM (Sigmoid) 3.5753 0.1303 0.1332 50
OS-ELM (RBF) 6.9629 0.1321 0.1341 50

California Stochastic BP 1.6866 0.1688 0.1704 9
Housing GGAP-RBF 115.34 0.1417 0.1386 18

MRAN 2891.5 0.1598 0.1586 64

Table 9: Comparison between OS-ELM and other sequential algorithms on regression applications.
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Real-World Classification Problems

Datasets Algorithms Time Accuracy (%) # nodes
(seconds) Training Testing

OS-ELM (Sigmoid) 9.9981 97.00 94.88 180
Image OS-ELM (RBF) 12.197 96.65 94.53 180

Segmentation Stochastic BP 2.5776 83.71 82.55 80
GAP-RBF 1724.3 - 89.93 44.2

MRAN 7004.5 - 93.30 53.1

OS-ELM (Sigmoid) 302.48 91.88 88.93 400
Satellite OS-ELM (RBF) 319.14 93.18 89.01 400
Image Stochastic BP 3.1415 85.23 83.75 25

MRAN 2469.4 - 86.36 20.4

OS-ELM (Sigmoid) 16.742 95.79 93.43 200
DNA OS-ELM (RBF) 20.951 96.12 94.37 200

Stochastic BP 1.0840 85.64 82.11 12
MRAN 6079.0 - 86.85 5

Table 10: Comparison between OS-ELM and other sequential algorithms on classification applications.
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Time-Series Problems

Algorithms Time (seconds) Training RMSE Testing RMSE #nodes
OS-ELM (Sigmoid) 7.1148 0.0177 0.0183 120

OS-ELM (RBF) 10.0603 0.0184 0.0186 120
GGAP-RBF 24.326 0.0700 0.0368 13

MRAN 57.205 0.1101 0.0337 16
RANEKF 62.674 0.0726 0.0240 23

RAN 58.127 0.1006 0.0466 39

Table 11: Comparison between OS-ELM and other sequential algorithms on Mackey-Glass time series application.
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Real-World Regression Problems

Datasets Activation Algorithms Learning Time RMSE #
Functions Mode (seconds) Training Testing nodes
Sigmoid ELM Batch 0.0053 0.0697 0.0694 25

1-by-1 0.0444 0.0680 0.0745 25
OS-ELM 20-by-20 0.0150 0.0684 0.0738 25

Auto - [10,30] 0.0213 0.0680 0.0765 25
MPG RBF ELM Batch 0.0100 0.0691 0.0694 25

1-by-1 0.0915 0.0696 0.0759 25
OS-ELM 20-by-20 0.0213 0.0686 0.0769 25

[10,30] 0.0250 0.0692 0.0746 25
Sigmoid ELM Batch 0.5122 0.1306 0.1333 50

1-by-1 3.5753 0.1303 0.1332 50
OS-ELM 20-by-20 0.6500 0.1297 0.1333 50

California [10,30] 0.8338 0.1302 0.1327 50
Housing RBF ELM Batch 1.0210 0.1292 0.1312 50

1-by-1 6.9629 0.1321 0.1341 50
OS-ELM 20-by-20 0.9794 0.1312 0.1333 50

[10,30] 1.3241 0.1305 0.1326 50

Table 12: Performance comparison of ELM and OS-ELM on regression applications.
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Real-World Classification Problems

Datasets Activation Algorithms Learning Time Accuracy (%) #
Functions Mode (seconds) Training Testing nodes
Sigmoid ELM Batch 0.6384 96.75 95.07 180

OS-ELM 1-by-1 9.9981 97.00 94.88 180
20-by-20 1.0922 97.05 94.60 180

Image [10,30] 0.9881 97.00 94.92 180
Segmentation RBF ELM Batch 1.6300 96.22 94.91 180

OS-ELM 1-by-1 12.197 96.65 94.53 180
20-by-20 1.4275 96.70 94.55 180
[10,30] 1.4456 96.75 94.60 180

Sigmoid ELM Batch 0.9748 96.90 94.30 200
OS-ELM 1-by-1 16.743 95.79 93.43 200

20-by-20 1.7322 95.87 93.46 200
DNA [10,30] 1.7875 95.81 93.42 200

RBF ELM Batch 8.2998 95.87 92.33 200
OS-ELM 1-by-1 20.951 96.12 94.37 200

20-by-20 2.6538 96.19 94.30 200
[10,30] 2.8814 96.17 94.25 200

Table 13: Performance comparison of ELM and OS-ELM on classification applications.
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Time-Series Problems

Activation Algorithms Learning Time RMSE #
Functions Mode (seconds) Training Testing nodes
Sigmoid ELM Batch 1.1664 0.0183 0.0187 120

OS-ELM 1-by-1 7.1184 0.0177 0.0183 120
20-by-20 0.9894 0.0177 0.0183 120
[10,30] 1.0440 0.0185 0.0190 120

RBF ELM Batch 2.1794 0.0185 0.0180 120
OS-ELM 1-by-1 10.060 0.0184 0.0186 120

20-by-20 1.5574 0.0183 0.0186 120
[10,30] 1.7441 0.0184 0.0187 120

Table 14: Performance comparison of ELM and OS-ELM on Mackey-Glass time series application.
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Intelligent Photo Notification System For Twitter Service

K. Choi, et al., “Incremental face recognition for large-scale social network services”, Pattern Recognition, vol. 45,

pp. 2868-2883, 2012.
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Intelligent Photo Notification System For Twitter Service

Figure 9: Binary Gabor filter-based OS-ELM (BG-OSELM)

Methods Baseline Sequential Subspace Sequential Classifiers
Database PCA FDA CCIPCA IPCA ILDA OSELM BG-OSELM(S) BG-OSELM(V)

AR 77.0 72.3 55.0 77.3 76.6 80.3 92.0 87.6
EYALE 99.7 96.9 58.5 99.7 100.0 100.0 99.7 99.7
BIOID 98.1 97.3 91.6 97.5 - 98.5 97.4 96.7
ETRI 95.8 95.5 86.9 95.4 - 97.2 97.0 94.2

Table 15: Performance comparison of different sequential methods.
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Figure 10: Example frames from top row: Weizmann dataset, middle row: KTH dataset, and bottom row: UCF
sports dataset

R. Minhas, et al., “Incremental learning in human action recognition based on Snippets”, (in press) IEEE

Transactions on Circuits and Systems for Video Technology, 2012.
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R. Minhas, et al., “Incremental learning in human action recognition based on Snippets”, (in press) IEEE

Transactions on Circuits and Systems for Video Technology, 2012.
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Figure 11: Tracking results using action videos of run, kick, golf and dive (top to bottom) from UCF Sports dataset
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Weizmann dataset
Methods OS-ELM Based [32] [14] [36] [11]
Frames 1/1 3/3 6/6 10/10 1/12 1/9 1/1 7/7 10/10 8/8 20/20

Accuracy 65.2 95.0 99.63 99.9 55.0 93.8 93.5 96.6 99.6 97.05 98.68

KTH dataset
Methods OS-ELM Based [25] [33] [43] [14] [36] [12]
Frames 1/1 3/3 6/6 10/10 - - - - 1/1 7/7 20/20

Accuracy 74.4 88.5 92.5 94.4 91.3 90.3 83.9 91.7 88.0 90.9 90.84

Table 16: Classification comparison against different approaches at snippet-level.

Weizmann dataset
Methods OS-ELM Based [2] [32] [14] [36] [41] [30] [11]
Frames 1/1 3/3 6/6 10/10 - - - - - - -

Accuracy 100.0 100.0 100.0 100.0 100.0 72.8 98.8 100.0 97.8 99.44 100.0

KTH dataset
Methods OS-ELM Based [14] [36] [30] [21] [27] [9] [44]
Frames 1/1 3/3 6/6 10/10 - - - - - - -

Accuracy 92.8 93.5 95.7 96.1 91.7 92.7 94.83 95.77 97.0 96.7 95.7

Table 17: Classification comparison against different approaches at sequence-level.

R. Minhas, et al., “Incremental learning in human action recognition based on Snippets”, (in press) IEEE

Transactions on Circuits and Systems for Video Technology, 2012.
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Open Problems

1 As observed in experimental studies, the performance of basic ELM is
stable in a wide range of number of hidden nodes. Compared to the BP
learning algorithm, the performance of basic ELM is not very sensitive
to the number of hidden nodes. However, how to prove it in theory
remains open.

2 One of the typical implementations of ELM is to use random nodes in
the hidden layer and the hidden layer of SLFNs need not be tuned. It is
interesting to see that the generalization performance of ELM turns out
to be very stable. How to estimate the oscillation bound of the
generalization performance of ELM remains open too.

3 It seems that ELM performs better than other conventional learning
algorithms in applications with higher noise. How to prove it in theory is
not clear.

4 ELM always has faster learning speed than LS-SVM if the same kernel
is used?
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Open Problems

5 ELM provides a batch learning kernel solution which is much simpler
than other kernel learning algorithms such as LS-SVM. It is known that
it may not be straightforward to have an efficient online sequential
implementation of SVM and LS-SVM. However, due to the simplicity of
ELM, is it possible to implement the online sequential variant of the
kernel based ELM?

6 ELM always provides similar or better generalization performance than
SVM and LS-SVM if the same kernel is used (if not affected by
computing devices’ precision)?

7 ELM tends to achieve better performance than SVM and LS-SVM in
multiclasses applications, the higher the number of classes is, the larger
the difference of their generalization performance will be?

8 Scalability of ELM with kernels in super large applications.
9 Parallel and distributed computing of ELM.
10 ELM will make real-time reasoning feasible?
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