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Abstract

Huang et al. [Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans.

Neural Networks 17(4) (2006) 879–892] has recently proposed an incremental extreme learning machine (I-ELM), which randomly adds

hidden nodes incrementally and analytically determines the output weights. Although hidden nodes are generated randomly, the network

constructed by I-ELM remains as a universal approximator. This paper extends I-ELM from the real domain to the complex domain.

We show that, as long as the hidden layer activation function is complex continuous discriminatory or complex bounded nonlinear

piecewise continuous, I-ELM can still approximate any target functions in the complex domain. The universal capability of the I-ELM in

the complex domain is further verified by two function approximations and one channel equalization problems.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Single-hidden layer feedforward neural networks
(SLFNs) have attracted extensive interest in many research
and application fields due to their approximation cap-
ability [3,24,27]. According to the conventional learning
theories [3,24,27], all hidden node parameters (the input
weights ai of the connections linking the input layer to the
hidden layer and the biases bi of the additive hidden nodes,
or the centers ai and the impact factors bi of the RBF
hidden nodes) need to be tuned in order to make SLFNs
work as universal approximators. Several researchers
[4,9,18,26] have independently found that the input weights
or centers ai need not be tuned.
(1)
 Baum [4] has claimed that (seen from simulations) one
may fix the weights of the connections on one level and
simply adjust the connections on the other level and no
(significant) gain is possible by using an algorithm able
to adjust the weights on both levels simultaneously.
Baum [4] did not discuss whether all the hidden node
biases bi should be set with the same value. Baum [4]
e front matter r 2007 Elsevier B.V. All rights reserved.
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did not discuss either whether the hidden node biases bi

should be tuned or not.

(2)
 Lowe [26] found that from an interpolation (instead of

universal approximation) point of view the centers ai of
RBF hidden nodes can be randomly selected from the
training data instead of tuning. In Lowe’s learning
model, the impact factor bi of RBF hidden nodes is not
randomly selected and it depends on the spread of the
training data sets. Furthermore all the impact factors bi

are usually set with the same value [26, p. 173]. Seen
from Broomhead and Lowe [5], Lowe et al. [5,26] in
fact focuses on a specific RBF network with the same
impact factor b assigned to all the RBF hidden nodes:
f nðxÞ ¼

Pn
i¼1 bigðbkx� aikÞ, x 2 Rd (cf. [5, Eq. (2.2)]).

If RBF centers and impact factors are selected based on
the training data, it may give advantages to the training
data and thus easily causes overfitting. (ELM works on
generalized feedforward network [10,11] and RBF
hidden node type is just one of the specific case of
ELM. Different from the RBF network presented in
Lowe et al. [5,26], the main RBF network interested
by ELM is f nðxÞ ¼

Pn
i¼1 bigðbikx� aikÞ where the

RBF hidden nodes are not requested to have the
same impact factors bi.) Interestingly, RBF networks
f nðxÞ

Pn
i¼1bigðbkx� aikÞ with randomly generated
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centers ai and randomly generated same values of
impact factors b in fact does not generally have the
universal approximation capability, in contrast, RBF
networks f nðxÞ ¼

Pn
i¼1 bigðbikx� aikÞ with randomly

generated centers ai and randomly generated impact
factors bi does generally have the universal approxima-
tion capability [10,11].
(3)
 Igelnik and Pao [18] proposed a random vector version
of the functional-link (RVFL) net. In RVFL model, the
input weights ai are ‘‘uniformly’’ drawn from a
probabilistic space V d

a ¼ ½0; aO� � ½�aO; aO�
d�1 (d: the

input dimension). The hidden node biases bi depend on
the weights ai and some other parameters yi and ui:
bi ¼ �ðaai � yi þ uiÞ, where yi and ui are randomly
generated from ½0; 1�d and ½�2O; 2O�. a and O have to
be determined in the learning stage and depends on the
training data distribution. However, Igelnik and Pao
[18] does not show how to determine a and O in the
learning stage.
(4)
 Ferrari and Stengel [9] also found that the input
weights ai need not be trained, however, similar to
Igelnik and Pao [18], Ferrari and Stengel [9] thought
that there should have some dependence between the
hidden node biases bi, the weights ai and the training
data.
Thus, strictly speaking, in all the previous works
[4,5,9,18,26] the so-called ‘‘randomly’’ generated hidden
node parameters are not completely independent of the
training data. For example, the hidden node biases or the
impact factors bi can only be generated after seeing
the training data. In this sense, these works still belong to
the conventional tuning-based learning models where the
hidden node parameters are generated only after the
training data are presented.

Different from [4,5,9,18,26], according to the best of our
knowledge Tamura and Tateishi [28] first proves that from
the interpolation (instead of universal approximation)
point of view SLFNs with an infinite differentiable sigmoid
activation function and with both randomly generated
input weights ai and hidden node biases bi can approximate
the training data with arbitrarily small errors. In Tamura
and Tateishi’s model [28] both the input weights ai and
hidden node biases bi can be randomly generated fully
independently from the training data. There is no necessary
relationship between the input weights ai and the hidden
node biases bi either. However, for SLFN cases, in order to
learn N distinct training data N hidden nodes are required,
which leads to overfitting and may not work well in
practical applications. Furthermore, generally speaking,
Tamura and Tateishi’s model [28] does not have the
universal approximation capability which is required by all
the function approximators.

Based on these earlier works, recently, Huang et al.
[10,12–17,25] have proposed a series of novel learning
methods called extreme learning machines (ELM) for
different applications. Different from the above-mentioned
semi-tuning-based learning methods [4,5,9,18,26] which,
strictly speaking, only randomly select the input weights or
centers ai instead of all parameters of the hidden nodes,
ELM is fully automatically implemented and in theory no
intervention is required from users, all the hidden node
parameters ai and bi are randomly generated independently
of the target functions and the training patterns. We found
that from the function approximation point of view there is
no relationship between ai and bi and the hidden node
parameters can be irrelevant to the target functions and the
training data. The output layer weights can then be
analytically determined by using a least-squares method.
Since ELM does not adjust hidden node parameters and
need not find the relationship between the input weights (or
RBF centers) ai and the hidden node bias (or impact
factors) bi, ELM is extremely simple and can run extremely
fast. Huang et al. [11] has proved the universal approxima-
tion capability of ELM in an incremental method (I-ELM).
ELM with any bounded nonlinear piecewise continuous
activation functions can work as universal approximators.
For example, ELM can be used to train SLFNs with a
hardlimit type of hidden layer which cannot be handled by
all the earlier methods [4,5,9,18,26]. Huang and Chen [10]
has recently extended the earlier work [11] to more
generalized cases and shows that: if SLFNs (with piecewise
continuous computational hidden nodes) can work as
universal approximators with adjustable hidden para-
meters, from the function approximation point of view
the hidden node parameters of such ‘‘generalized’’ SLFNs
(including sigmoid networks, RBF networks, trigonometric
networks, threshold networks, high-order networks, etc.)
can actually be randomly generated according to any
continuous sampling distribution. Most of these works are
focused on the real domain.
Li et al. [25] have extended ELM from the real domain to

the complex domain which is referred to as C-ELM, but its
universal approximation capability has not been investi-
gated yet. Different from many other complex domain
learning algorithms, C-ELM can be applied in SLFNs with
fully complex instead of complex-valued activation func-
tions. Although neural networks have been successfully
used in complex fields such as wireless and mobile
communication applications [6,7,19], it faces the challenge
in finding proper nonlinear fully complex activation
functions to construct neural networks to process complex
signal [20–22]. According to complex analysis, there may
exist some conflicts between the boundedness and the
differentiability of complex function in the entire complex
domain [22]. A bounded analytic (differentiable at every
point z 2 C) function must be a constant in the complex
domain C. Recently, Kim and Adali [20] proved the
approximation capability of SLFNs with tunable hidden
nodes and with fully complex activation functions.
In this paper, we further extend I-ELM into complex

domain, we rigorously prove that I-ELM and C-ELM with
fully complex activation functions and with randomly
generated hidden nodes independent of the training data
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can work as universal approximators. More generally, in both
I-ELM and C-ELM, the hidden nodes need not be a single
additive type, a multiplicative combination of multiple
complex additive nodes can be used in the hidden layer.

2. Preliminaries

2.1. Review of I-ELM in real domain

In this section, we first introduce the I-ELM [11] which
in the real domain adds randomly generated hidden nodes
incrementally. The hidden node parameters ai and bi in I-
ELM are not only independent of each other and the
training data.

Without any loss of generality, we assume that the
network has only one linear output node. All the analysis
can be easily extended into multi-nonlinear output nodes
cases. A standard SLFNs functions with n hidden nodes
can be represented by

f nðxÞ ¼
Xn

i¼1

bigiðxÞ; x 2 Rd ; bi 2 R, (1)

where giðxÞ ¼ gðai; bi;xÞ denotes the output of the ith
hidden node: giðxÞ ¼ gðai � xþ biÞ (for additive nodes) or
giðxÞ ¼ gðbikx� aikÞ (for RBF nodes), bi is the output
weights of the connections linking the ith hidden layer to
the output node. I-ELM randomly adds the hidden nodes
to the existing networks. The parameters of the hidden
nodes ai and bi are randomly generated based on any
continuous sampling distribution probability and fully
independent of the training data. Once the hidden nodes
have been added all the parameters ai and bi of the hidden
nodes and their corresponding output weights bi will be
fixed forever.

Let en � f � f n denote the residual error function for the
current network f n with n hidden nodes where f 2 L2ðX Þ is
the target function. The mathematical form of I-ELM [11]
is

f nðxÞ ¼ f n�1ðxÞ þ bngnðxÞ, (2)

Unlike other traditional algorithms, which usually find
proper parameter based on some optimization techniques
such that limn!1 kf � f nk ¼ 0, I-ELM can still work as
universal approximators though hidden node parameters
are chosen randomly. The corresponding theorem is
following:

Lemma 2.1 (Huang et al. [11]). Given any bounded non-

constant piecewise continuous function g : R! R for

additive nodes or any integrable piecewise continuous

function g : R! R and
R
R

gðxÞdxa0 for RBF nodes, for

any continuous target function f and any randomly generated

function sequence fgng, limn!1 kf � f nk ¼ 0 holds with

probability one if

bn ¼
hen�1; gni

kgnk
2

. (3)
Remark 1. I-ELM works with a broad class of activation
functions: the activation functions for additive nodes can
be any bounded non-constant piecewise continuous func-
tions g : R! R and the activation functions for RBF
nodes can be any integrable piecewise continuous functions
g : R! R and

R
R

gðxÞdxa0. I-ELM is not only efficient
for SLFNs with continuous (including non-differentiable)
activation functions but also for SLFNs with piecewise
continuous (such as threshold) activation functions.

2.2. Symbols and theorems in the complex domain

The output of SLFNs with n hidden nodes can be
represented by

f nðzÞ ¼
Xn

i¼1

bigiðzÞ; z 2 Cd ; bi 2 C, (4)

where giðzÞ is the output of the ith hidden node for an input
vector z 2 Cd .
Let L2ðZÞ be a space of functions f with a measurable

compact subset Z in the d-dimensional space Cd such that
jf j2 are integrable. For u; v 2 L2ðZÞ, the inner product hu; vi
is defined by

hu; vi ¼

Z
Z

uðzÞvðzÞdz. (5)

The norm in L2 space will be denoted as k � k, and the
closeness between network function f n and the target
function f is measured by the L2 distance:

kf n � f k ¼

Z
Z

ðf nðzÞ � f ðzÞÞðf nðzÞ � f ðzÞÞdz

� �1=2
. (6)

In this paper, the sample input space Z is always
considered as a bounded measurable compact subset of
the space Cd .
Similarly, we define a random function sequence on the

complex domain as:

Definition 2.1. The function sequence fgn ¼ gðan � zþ bnÞg

is said to be randomly generated if the corresponding
parameters ðan; bnÞ are randomly generated from Cd

� C

based on a continuous sampling distribution probability.

2.3. Necessary lemmas

Some lemmas that are required in the proof of our main
theorem are provided in this section.

Lemma 2.2 (Kolmogorov and Fomin [23, p. 81]). The space

of L2 is complete.

Lemma 2.3 (Kim and Adali [22, Theorem 1]). Let s : C!

C be any complex continuous discriminatory function. Let

Id denote the d-dimensional complex unit cube ½0; 1�d . Then

the finite sums of the product of the form f nðzÞ ¼Pn
i¼1 bi

Qsi

l¼1 sðail � zþ biÞ are dense in CðIdÞ, that is, 8f 2
CðIdÞ and e40, 9f nðzÞ such that jf nðzÞ � f ðzÞjoe, 8z 2 Id ,
where ail 2 Cd and bi 2 C.
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Lemma 2.3 shows that if s is complex continuous
discriminatory, for any target complex continuous function
f there exists f n such as f n converges to f everywhere in the
bounded set Id , thus we further have kf nðzÞ � f ðzÞkoe
which is weaker than jf nðzÞ � f ðzÞjoe. Therefore,
we have

Lemma 2.4. Given any complex continuous discriminatory

function s : C! C, for any target continuous function f and

e40 there exists f n such that kf nðzÞ � f ðzÞk ¼

k
Pn

i¼1 bi

Qsi

l¼1 sðail � zþ biÞ � f koe, where z is a compact
subset of Cdail 2 Cd and bi 2 C.

Lemma 2.5 (Kim and Adali [22, Theorem 2]). Let s : C!

C be any complex bounded measurable discriminatory

function. Then the finite sums of the form f nðzÞ ¼Pn
i¼1 bi

Qsi

l¼1 sðail � zþ biÞ are dense in L1ðIdÞ, whereail 2

Cd and bi 2 C.

Lemma 2.4 shows the case where the activation
function s is complex continuous discriminatory, however,
in this case the activation function s may not be
bounded. Lemma 2.5 shows the case where the activation
function s is bounded but may not be continuous. As the
supremum norm in L1ðmÞ can be generalized to LpðmÞ-norm
with 0opo1, s may be piecewise continuous, we further
have

Lemma 2.6. Given any complex bounded nonlinear piecewise

continuous function s : C! C, f nðzÞ ¼
Pn

i¼1 bi

Qsi

l¼1 sðail �

zþ biÞ are dense in L2ðZÞ, where ail 2 Cd and bi 2 C.

3. Incremental fully complex ELM

3.1. Function approximation

In this subsection we can first show that any continuous
target function f : Cd

! C can be approximated with any
arbitrarily small error by an incremental fully complex
ELM where the complex hidden nodes are randomly added
one by one and will be fixed once added. In fact, given any
complex continuous discriminatory or any complex
bounded nonlinear piecewise continuous function
s : C! C, and any randomly generated function sequence
fgiðzÞg:

giðzÞ ¼
Ysi

l¼1

sðail � zþ biÞ, (7)

where ail and bi are randomly generated fully indepen-
dently of the target function f based on any continuous
distribution probability, then for any small positive value �,
there exists a network sequence ff ng, we have limn!1 kf n �

f k ¼ 0 if bn ¼ hen�1; gni=kgnk
2.

Theorem 3.1. Given any complex continuous discriminatory

or any complex bounded nonlinear piecewise continuous

function s : C! C, for any target complex continuous

function f : Cd
! C and any randomly generated function

sequence fgn ¼
Qsn

l¼1 sðanl � zþ bnÞg, limn!1 kf � f nk ¼ 0
holds with probability one if

bn ¼
hen�1; gni

kgnk
2

. (8)

Proof. Since complex space is also a measurable geometry
space, therefore the whole proof is similar to [11, pp.
881–884]. The main difference is that we only need to
migrate the inner product in the whole proof from the real
domain to complex domain.
Since s is a complex continuous discriminatory or

complex bounded nonlinear piecewise continuous function,
giðzÞ ¼

Qsi

l¼1 sðail � zþ biÞ 2 L2ðZÞ and kgnk ¼
R

Z
gn�

gn dza0. The target function f is continuous, we have
f 2 L2ðZÞ. According to Lemma 2.2, en ¼ f � f n 2 L2ðZÞ.
Let D ¼ ken�1k

2 � kenk
2, then we have

D ¼ ken�1k
2 � kenk

2

¼ hen�1; en�1i � hen�1 � bngn; en�1 � bngni

¼ hen�1; en�1i � ðhen�1; en�1i � hen�1;bngni

� hbngn; en�1i þ hbngn;bngniÞ

¼ bnhen�1; gni þ bnhgn; en�1i � bnbnhgn; gni

¼ bnhen�1; gni þ bnhen�1; gni � bnbnhgn; gni

¼ kgnk
2 hen�1; gnihen�1; gni

kgnk
4

� bn �
hen�1; gni

kgnk
2

� ��

� bn �
hen�1; gni

kgnk
2

� ��
. ð9Þ

D is maximized iff bn ¼ hen�1; gni=kgnk
2, meaning that

kenk ¼ kf � ðf n�1 þ bngnÞk achieves its minimum iff
b ¼ bn ¼ hen�1; gni=kgnk

2. The result is consistent with the
real domain case.
With Lemmas 2.4 and 2.6 we can prove kenk converges to

zero in the same proof method given in [11, pp. 881–884].
For the sake of brevity, readers can refer to [11] for details as
it does not convey any new idea to repeat the same proof
procedure. &

When the network architecture is fixed (with fixed n),
from Theorem 3.1 we have

Theorem 3.2. Given any complex continuous discriminatory

or any complex bounded nonlinear piecewise continuous

function s : C! C, for any continuous target function f :
Cd
! C and any function sequence fgn ¼

Qsn

l¼1 sðanl � zþ

bnÞg randomly generated based on any continuous sampling

distribution probability, limn!1 kf � f nk ¼ 0 holds with

probability one if the output parameters are determined by

ordinary least square to minimize kf ðzÞ �
Pn

i¼1 bigiðzÞk.

Remark 2. Theorems 3.1 and 3.2 specifies a generic
network model where the hidden node itself may be a
single-hidden layer feedforward network (SLFN) with
multiplicative hidden nodes. For instance, the ith hidden
node of this genetic network model is a SLFN
with multiplicative hidden node and with activation
function s: giðzÞ ¼

Qsi

l¼1 sðail � zþ biÞ. When si ¼ 1, f nðzÞ ¼
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Pn
i¼1 bi

Qsi

l¼1 sðail � zþ biÞ ¼
Pn

i¼1 bisðail � zþ biÞ which is a
standard SLFNs with one additive hidden layer. Thus, the
SLFNs with one additive hidden layer is a specific case of
this generic network model when si ¼ 1.

Remark 3. Li et al. [25] proposed a standard fully complex
SLFN si ¼ 1 with randomly generated hidden nodes and
fixed network architecture, which we called the fully complex
extreme learning machine (C-ELM). According to Theorems
3.1 and 3.2, C-ELM can thus, be extended to a more generic
model. Furthermore, according to Theorem 3.2, the fully
C-ELM with fixed network architectures, where the output
parameters are determined by ordinary least square, is a
universal approximator if the fully complex activation
function s is complex continuous discriminatory or complex
bounded nonlinear piecewise continuous.

3.2. Algorithmic implementation

In this subsection, we introduce an implementation of
Theorem 3.1 that resembles the incremental algorithm
(I-ELM) [11]. The difference is that hidden node used in
this extension may be a multiplicative SLFNs instead of a
single additive node and the activation function has been
extended from real to complex domain. According to
Theorem 3.1, we know that the output weights bn should
be chosen as hen�1; gni=kgnk

2 for newly added hidden node.
By the definition of Hermitian inner product, we have
hu; vi ¼

R
X

uðzÞvðzÞdz ¼
PN

p¼1 uðzpÞvðzpÞ, thus an estimate
bn based on the training samples is

bn ¼
En�1 �H

�

H �H�
¼

PN
p¼1 en�1ðpÞgnðpÞPN

p¼1 gnðpÞgnðpÞ
, (10)

where H� means complex conjugate transposition, gnðpÞ is
the output of the nth hidden node in the complex network
for the input of pth training sample and eðpÞ is the
corresponding residual error before this new hidden node is
added. H ¼ ½gnð1Þ; . . . ; gnðNÞ�

T is the activation vector of
the new node for all the N training samples and En�1 ¼

½en�1ð1Þ; . . . ; en�1ðNÞ�
T is the residual vector before adding

the new hidden node. In real applications, one may not
really wish to get zero approximation error by adding
infinite number of nodes to the network by providing a
maximum number of hidden nodes. The detail algorithm is
summarized as follows:

Algorithm. Given a training set @ ¼ fðzi; tiÞjzi 2 Cd ; ti 2

C; i ¼ 1; . . . ;Ng, complex activation function s, maximum
number of hidden nodes Lmax and expected learning
accuracy �,
Step 1:
 Initialization: Let L ¼ 0 and residual error

E ¼ t, where t ¼ ½t1; . . . ; tN �
T.
Step 2:
 Learning step:
while LoLmax and kEk4�

(a) Increase the number of hidden nodes L:
L ¼ Lþ 1.
(b) Assign randomly the hidden node
parameters ðaL; bLÞ for new hidden node L.

(c) Calculate the output weight bL for the
new hidden L:

bL ¼
E �H�L

HL �H
�
L

. (11)
(d) Calculate the residual error after adding
the new hidden node L:

E ¼ E � bL �HL. (12)
endwhile
4. Experimental verification

In the previous section, we have provided our theoretical
justification for the incremental feedforward networks in
the complex domain. In this section, simulation results are
given to verify the theory.
For the sake of simplicity, we demonstrate the universal

approximation capability of complex I-ELM with one
additive hidden layer ðsi ¼ 1Þ and with three fully complex
activation functions: arcsinðzÞ ¼

R z

0 dt=ð1� tÞ1=2, arccosðzÞ
¼
R z

0 dt=ð1� t2Þ1=2, and arcsinhðzÞ ¼
R z

0 dt=ð1þ t2Þ1=2, where
z 2 C. All simulations were conducted in MATLAB
environment running in a P4/2.8GHz PC.

4.1. Function approximation

Two approximation problems in complex domain used in
[1] have been investigated first. In these simulations, 10000
training samples and 1000 testing samples are randomly drawn
from the interval ½0þ i0; 1þ i�. Both the input weight vectors
ai and biases bi of the complex I-ELM are randomly chosen
from a complex area centered at the origin with the radius set
to 1. Lmax is set to 6000 and � ¼ 0:01. The simulation results
are obtained after 10 independent runs for each case.

Example 1. The convergence of I-ELM with the fully
complex activation functions is first verified in a non-
analytic function used in [1]:

f ðzÞ ¼ f ðxþ iyÞ ¼ eiyð1� x2 � y2Þ. (13)

Fig. 1 shows the update of the average testing root mean
square error (RMSE) when the network grows. It can be
seen that the learning convergence curves decrease with the
increase of network size. Fig. 2 shows that the training time
is linearly increasing with the increase of network size,
which is consistent with the analysis on real domain.

Example 2. The convergence of I-ELM with the fully
complex activation functions is also verified through an
analytic function given as

f ðzÞ ¼ f ðxþ iyÞ ¼ sinðxÞ coshðyÞ þ icosðxÞ sinhðyÞ. (14)

Figs. 3 and 4 show the update of the average testing RMSE
and the spent time with the increase of hidden nodes,
respectively. We observe that the learning convergence
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Fig. 1. Learning convergence for arcsin, arcsinh and arccos activation

functions (Example 1).

Fig. 2. Training time for different activation functions (Example 1).

Fig. 3. Learning convergence for arcsin, arcsinh and arccos activation

functions (Example 2).

Fig. 4. Training time for different activation functions (Example 2).

Fig. 5. Decision boundary of Bayesian equalizer.
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curves decrease and the training time is linearly increasing
with the increase of network size.
4.2. Channel equalization

It is well known that the channel equalization can be
considered as a classification problem. Here, a third-order
complex channel model studied by Chen et al. [8] for
4-QAM signaling is used to verify the performance of
I-ELM with the fully complex activation functions. The
channel model is given by

AðzÞ ¼ ð0:7409� j0:7406Þð1� ð0:2� j0:1Þz�1Þ

�ð1� ð0:6� j0:3Þz�1Þ. ð15Þ
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The noise variance is s2e ¼ 0:06324 ðSNR ¼ 15 dBÞ. Similar
to Chen et al. [8], the equalizer dimension was set to m ¼ 1
and the equalizer decision delay was t ¼ 0. 8000 training
samples are used to train the complex I-ELM equalizer and
the maximum hidden node number is set to 5000. The real
and imaginary part of complex input layer weights and
biases are randomly chosen from the interval ½�1; 1�. Fig. 5
shows the decision boundary using Bayesian equalizer
which can achieve the optimal solution. The symbols
ð�; �;þ; oÞ represent the four classes of input signals. The
complex I-ELM equalizers with different activation func-
tions are shown in Figs. 6–8. It can be seen that complex
I-ELM equalizers can also separate the input space into
four areas clearly.
Fig. 6. Decision boundary of complex I-ELM equalizer with arcsin

activation function.

Fig. 7. Decision boundary of complex I-ELM equalizer with arcsinh

activation function.

Fig. 8. Decision boundary of complex I-ELM equalizer with arccos

activation function.
5. Conclusions

In this paper, we show that the complex SLFNs using
the proposed incremental algorithm (I-ELM) can approx-
imate any target continuous functions in complex domain.
Each hidden node in I-ELM can be a single additive node
or a multiplicative combination of additive nodes. In
contrast to tuning-based learning algorithms, our tuning-
free I-ELM does not requires any intervention from users.
The proposed I-ELM can be applied to a wide range of
complex activation functions which may be differentiable
or non-differentiable. As long as the hidden layer activa-
tion function is complex continuous discriminatory or
complex bounded nonlinear piecewise continuous I-ELM
can still approximate any target functions in the complex
domain. The traditional gradient descent based learning
algorithms cannot be applied to networks with non-
differential activation functions and are limited by local
minima issues. However, the proposed I-ELM can avoid
the above issues.
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